Spaces:
Sleeping
Sleeping
File size: 25,594 Bytes
f20fe1f e2492f0 0c12779 e2492f0 fbef789 cd361a4 fbef789 e2492f0 cd361a4 5dd4f2e cd361a4 e2492f0 e2839df 5dd4f2e fef15d6 e2492f0 fef15d6 146de98 e2492f0 5dd4f2e fef15d6 2d71013 5dd4f2e 2d71013 5dd4f2e fef15d6 2d71013 fef15d6 2d71013 fef15d6 5dd4f2e fef15d6 5dd4f2e e2839df e2492f0 0c12779 fef15d6 fbef789 cd361a4 fbef789 fef15d6 fbef789 cd361a4 fbef789 fef15d6 fbef789 cd361a4 0c12779 cd361a4 fef15d6 fbef789 cd361a4 fef15d6 e2492f0 56926a1 e2492f0 fbef789 e2492f0 fbef789 376ee7c e2492f0 376ee7c fbef789 e2492f0 fbef789 56926a1 376ee7c e2492f0 fbef789 e2492f0 460d366 fbef789 e2492f0 376ee7c e2492f0 fbef789 e2492f0 fbef789 56926a1 376ee7c e2492f0 fbef789 376ee7c e7825c1 fbef789 56926a1 376ee7c fbef789 e7825c1 fbef789 376ee7c fbef789 e2492f0 fbef789 e7825c1 376ee7c e7825c1 376ee7c e7825c1 56926a1 e2492f0 376ee7c e2492f0 cd361a4 e2492f0 460d366 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 56926a1 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 e2839df e2492f0 5dd4f2e e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 5dd4f2e cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 e2839df cd361a4 e2492f0 5dd4f2e e2492f0 cd361a4 5dd4f2e e2492f0 cd361a4 e2492f0 cd361a4 e2492f0 cd361a4 5dd4f2e e2492f0 cd361a4 5dd4f2e cd361a4 5dd4f2e cd361a4 5dd4f2e cd361a4 5dd4f2e cd361a4 5dd4f2e cd361a4 e2492f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Patch for Hugging Face Spaces: set MPLCONFIGDIR to avoid permission errors with matplotlib
import os
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.makedirs("/tmp/matplotlib", exist_ok=True)
from flask import Flask, render_template, request, jsonify, send_from_directory, url_for
from flask_cors import CORS
import cv2
import torch
import numpy as np
import os
from werkzeug.utils import secure_filename
import sys
import traceback
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import time
import tensorflow_hub as hub
import gc
import psutil
import logging
# Check GPU availability
print("[GPU] Checking GPU availability...")
gpus = tf.config.list_physical_devices('GPU')
if gpus:
print(f"[GPU] Found {len(gpus)} GPU(s):")
for gpu in gpus:
print(f"[GPU] {gpu}")
# Enable memory growth to avoid allocating all GPU memory at once
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print("[GPU] Memory growth enabled for all GPUs")
else:
print("[GPU] No GPU found, will use CPU")
# Add bodybuilding_pose_analyzer to path
sys.path.append('.') # Assuming app.py is at the root of cv.github.io
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def log_memory_usage():
"""Log current memory usage."""
try:
process = psutil.Process()
memory_info = process.memory_info()
logger.info(f"Memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
except Exception as e:
logger.error(f"Error logging memory usage: {e}")
def cleanup_memory():
"""Force garbage collection and log memory usage."""
try:
gc.collect()
log_memory_usage()
except Exception as e:
logger.error(f"Error in cleanup_memory: {e}")
# Add file handler for persistent logging
log_dir = 'logs'
os.makedirs(log_dir, exist_ok=True)
file_handler = logging.FileHandler(os.path.join(log_dir, 'app.log'))
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
# Define base paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
STATIC_DIR = os.path.join(BASE_DIR, 'static')
UPLOAD_DIR = os.path.join(STATIC_DIR, 'uploads')
MODEL_DIR = os.path.join(BASE_DIR, 'external', 'BodybuildingPoseClassifier')
# Ensure all required directories exist
for directory in [STATIC_DIR, UPLOAD_DIR, MODEL_DIR, log_dir]:
os.makedirs(directory, exist_ok=True)
logger.info(f"Ensured directory exists: {directory}")
app = Flask(__name__, static_url_path='/static', static_folder=STATIC_DIR)
CORS(app, resources={r"/*": {"origins": "*"}})
app.config['UPLOAD_FOLDER'] = UPLOAD_DIR
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024 # 100MB max file size
# Load CNN model for bodybuilding pose classification
try:
logger.info("Loading CNN model...")
cnn_model_path = os.path.join(MODEL_DIR, 'bodybuilding_pose_classifier.h5')
logger.info(f"Looking for model at: {cnn_model_path}")
# List directory contents to debug
logger.info(f"Contents of MODEL_DIR: {os.listdir(MODEL_DIR)}")
if not os.path.exists(cnn_model_path):
logger.error(f"Model file not found at {cnn_model_path}")
logger.error(f"Current working directory: {os.getcwd()}")
logger.error(f"Directory contents: {os.listdir('.')}")
raise FileNotFoundError(f"CNN model not found at {cnn_model_path}")
# Check file permissions
logger.info(f"Model file permissions: {oct(os.stat(cnn_model_path).st_mode)[-3:]}")
# Load model with custom_objects to handle any custom layers
logger.info("Attempting to load model...")
cnn_model = load_model(cnn_model_path, compile=False)
logger.info("CNN model loaded successfully")
except Exception as e:
logger.error(f"Error loading CNN model: {e}")
logger.error(traceback.format_exc())
raise
# Initialize TensorFlow session with memory growth
try:
gpus = tf.config.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logger.info("GPU memory growth enabled")
else:
logger.info("No GPU found, using CPU")
except Exception as e:
logger.error(f"Error configuring GPU: {e}")
logger.error(traceback.format_exc())
cnn_class_labels = ['side_chest', 'front_double_biceps', 'back_double_biceps', 'front_lat_spread', 'back_lat_spread']
def predict_pose_cnn(img_path):
try:
cleanup_memory()
if gpus:
logger.info("[CNN_DEBUG] Using GPU for CNN prediction")
with tf.device('/GPU:0'):
img = image.load_img(img_path, target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = cnn_model.predict(img_array, verbose=0)
predicted_class = np.argmax(predictions, axis=1)
confidence = float(np.max(predictions))
else:
logger.info("[CNN_DEBUG] No GPU found, using CPU for CNN prediction")
with tf.device('/CPU:0'):
img = image.load_img(img_path, target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = cnn_model.predict(img_array, verbose=0)
predicted_class = np.argmax(predictions, axis=1)
confidence = float(np.max(predictions))
logger.info(f"[CNN_DEBUG] Prediction successful: {cnn_class_labels[predicted_class[0]]}")
return cnn_class_labels[predicted_class[0]], confidence
except Exception as e:
logger.error(f"[CNN_ERROR] Exception during CNN prediction: {e}")
logger.error(traceback.format_exc())
raise
finally:
cleanup_memory()
@app.route('/static/uploads/<path:filename>', endpoint='serve_video')
def serve_video(filename):
response = send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=False)
# Ensure correct content type, especially for Safari/iOS if issues arise
if filename.lower().endswith('.mp4'):
response.headers['Content-Type'] = 'video/mp4'
return response
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,X-Requested-With,Accept')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
def process_video_movenet(video_path):
try:
print("[DEBUG] Starting MoveNet video processing")
print(f"[DEBUG] Python version: {sys.version}")
print(f"[DEBUG] OpenCV version: {cv2.__version__}")
print(f"[DEBUG] TensorFlow version: {tf.__version__}")
print(f"[DEBUG] Upload dir contents: {os.listdir(os.path.dirname(video_path))}")
print(f"[DEBUG] Current working dir: {os.getcwd()}")
print(f"[DEBUG] Model dir contents: {os.listdir(os.path.join(BASE_DIR, 'external', 'BodybuildingPoseClassifier'))}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"[ERROR] Could not open video file: {video_path}")
raise ValueError("Could not open video file")
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"[DEBUG] Video properties - FPS: {fps}, Width: {width}, Height: {height}, Total Frames: {total_frames}")
# Force MoveNet to CPU to avoid GPU JIT error
print("[DEBUG] Forcing CPU for MoveNet (due to GPU JIT error)")
try:
with tf.device('/CPU:0'):
print("[DEBUG] Loading MoveNet model...")
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
movenet = movenet_model.signatures['serving_default']
print("[DEBUG] MoveNet model loaded.")
except Exception as e:
print(f"[ERROR] Exception during MoveNet model load: {e}")
import traceback; traceback.print_exc()
raise
# Create output video writer
output_filename = f'output_movenet_lightning.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
print(f"Output path: {output_path}")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if not out.isOpened():
print(f"[ERROR] Failed to create output video writer at {output_path}")
raise ValueError(f"Failed to create output video writer at {output_path}")
frame_count = 0
processed_frames = 0
first_frame_shape = None
print("[DEBUG] Entering frame loop...")
while cap.isOpened():
try:
ret, frame = cap.read()
print(f"[DEBUG] Frame {frame_count+1}: ret={ret}, frame is None: {frame is None}")
if not ret or frame is None:
print(f"[DEBUG] Stopping at frame {frame_count+1}: ret={ret}, frame is None: {frame is None}")
break
if first_frame_shape is None:
first_frame_shape = frame.shape
print(f"[DEBUG] First frame shape: {first_frame_shape}")
frame_count += 1
# Ensure frame size matches VideoWriter
if frame.shape[1] != width or frame.shape[0] != height:
print(f"[WARNING] Frame size {frame.shape[1]}x{frame.shape[0]} does not match VideoWriter size {width}x{height}. Resizing.")
frame = cv2.resize(frame, (width, height))
# Resize and pad the image to keep aspect ratio
img = frame.copy()
img = tf.image.resize_with_pad(tf.expand_dims(img, axis=0), 192, 192)
img = tf.cast(img, dtype=tf.int32)
# Always run inference on CPU
try:
with tf.device('/CPU:0'):
results = movenet(img)
keypoints = results['output_0'].numpy()
except Exception as e:
print(f"[ERROR] Exception during MoveNet inference on frame {frame_count}: {e}")
import traceback; traceback.print_exc()
continue
# Process keypoints and draw on frame
y, x, c = frame.shape
shaped = np.squeeze(keypoints)
for kp in range(17):
ky, kx, kp_conf = shaped[kp]
if kp_conf > 0.3:
cx, cy = int(kx * x), int(ky * y)
cv2.circle(frame, (cx, cy), 6, (0, 255, 0), -1)
out.write(frame)
processed_frames += 1
print(f"[DEBUG] Wrote frame {frame_count} to output video.")
except Exception as e:
print(f"[ERROR] Exception in frame loop at frame {frame_count+1}: {e}")
import traceback; traceback.print_exc()
continue
cap.release()
out.release()
print(f"[DEBUG] Processed {processed_frames} frames out of {total_frames} total frames")
# Check output file size
if not os.path.exists(output_path):
print(f"[ERROR] Output video file was not created: {output_path}")
raise ValueError(f"Output video file was not created: {output_path}")
file_size = os.path.getsize(output_path)
print(f"[DEBUG] Output video file size: {file_size} bytes")
if processed_frames == 0 or file_size < 1000:
print(f"[ERROR] Output video file is empty or too small: {output_path}")
raise ValueError(f"Output video file is empty or too small: {output_path}")
video_url = url_for('serve_video', filename=output_filename, _external=False)
print(f"[DEBUG] Returning video URL: {video_url}")
return video_url
except Exception as e:
print(f"[FATAL ERROR] Uncaught exception in process_video_movenet: {e}")
import traceback; traceback.print_exc()
raise
def process_video_mediapipe(video_path):
try:
cleanup_memory() # Clean up before processing
logger.info(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = PoseAnalyzer()
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Add panel width to total width
panel_width = 300
total_width = width + panel_width
print(f"Processing video with MediaPipe: {width}x{height} @ {fps}fps")
output_filename = f'output_mediapipe.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (total_width, height))
if not out.isOpened():
raise ValueError(f"Failed to create output video writer at {output_path}")
frame_count = 0
current_pose = 'Uncertain' # Initial pose for MediaPipe
segment_length = 4 * fps if fps > 0 else 120
cnn_pose = None
last_valid_landmarks = None
analysis_results = {'error': 'Processing not started'} # Initialize analysis_results
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % 30 == 0:
logger.info(f"Processing frame {frame_count}")
cleanup_memory() # Clean up periodically
# Process frame with MediaPipe
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
analysis_results = current_analysis_results # Update with the latest analysis
if landmarks:
last_valid_landmarks = landmarks
# CNN prediction (every 4 seconds)
if (frame_count - 1) % segment_length == 0:
temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg' # Unique temp name
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
logger.info(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
if cnn_conf >= 0.3:
current_pose = cnn_pose_pred # Update current_pose to be displayed
except Exception as e:
logger.error(f"[CNN] Error predicting pose on frame {frame_count}: {e}")
finally:
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Create side panel
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
# --- Dynamic Text Parameter Calculations ---
current_font = cv2.FONT_HERSHEY_DUPLEX
# Base font scale and reference video height for scaling
base_font_scale_at_ref_height = 0.6
reference_height_for_font_scale = 640.0
# Calculate dynamic font_scale
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
font_scale = max(0.4, min(font_scale, 1.2))
# Calculate dynamic thickness
thickness = 1 if font_scale < 0.7 else 2
# Calculate dynamic line_height
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
line_spacing_factor = 1.8
line_height = int(text_actual_height * line_spacing_factor)
line_height = max(line_height, 15)
# Initial y_offset
y_offset_panel = max(line_height, 20)
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if frame_count % 30 == 0:
logger.info(f"[MEDIAPIPE_PANEL] Frame {frame_count} - Current Pose for Panel: {current_pose}")
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
y_offset_panel += int(line_height * 1.5)
if 'error' not in analysis_results:
cv2.putText(panel, "Angles:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for joint, angle in analysis_results.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(panel, text_to_display, (20, y_offset_panel), current_font, font_scale, (0, 255, 0), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if analysis_results.get('corrections'):
y_offset_panel += line_height
cv2.putText(panel, "Corrections:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for correction in analysis_results.get('corrections', []):
cv2.putText(panel, f"β’ {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
if analysis_results.get('notes'):
y_offset_panel += line_height
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
for note in analysis_results.get('notes', []):
cv2.putText(panel, f"β’ {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
else:
cv2.putText(panel, "Error:", (10, y_offset_panel), current_font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
y_offset_panel += line_height
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
combined_frame = np.hstack((processed_frame, panel))
out.write(combined_frame)
cap.release()
out.release()
cleanup_memory() # Clean up after processing
if frame_count == 0:
raise ValueError("No frames were processed from the video by MediaPipe")
logger.info(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
video_url = url_for('serve_video', filename=output_filename, _external=False)
print(f"[DEBUG] Returning video URL: {video_url}")
return video_url
except Exception as e:
logger.error(f'Error in process_video_mediapipe: {e}')
traceback.print_exc()
raise
finally:
cleanup_memory() # Clean up in case of error
@app.route('/')
def index():
return render_template('index.html')
# Add error handling for video processing
def safe_video_processing(video_path, model_choice):
"""Wrapper function to handle video processing with proper cleanup."""
try:
if model_choice == 'movenet':
return process_video_movenet(video_path)
else:
return process_video_mediapipe(video_path)
except Exception as e:
logger.error(f"Error in video processing: {e}")
logger.error(traceback.format_exc())
raise
finally:
cleanup_memory()
@app.route('/upload', methods=['POST'])
def upload_file():
try:
cleanup_memory()
if 'video' not in request.files:
logger.error("[UPLOAD] No video file in request")
return jsonify({'error': 'No video file provided'}), 400
file = request.files['video']
if file.filename == '':
logger.error("[UPLOAD] Empty filename")
return jsonify({'error': 'No selected file'}), 400
if file:
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
logger.error(f"[UPLOAD] Invalid file format: {file.filename}")
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
# Ensure the filename is properly sanitized
filename = secure_filename(file.filename)
logger.info(f"[UPLOAD] Original filename: {file.filename}")
logger.info(f"[UPLOAD] Sanitized filename: {filename}")
# Create a unique filename to prevent conflicts
base, ext = os.path.splitext(filename)
unique_filename = f"{base}_{int(time.time())}{ext}"
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
# Ensure upload directory exists
os.makedirs(os.path.dirname(filepath), exist_ok=True)
logger.info(f"[UPLOAD] Saving file to: {filepath}")
file.save(filepath)
if not os.path.exists(filepath):
logger.error(f"[UPLOAD] File not found after save: {filepath}")
return jsonify({'error': 'Failed to save uploaded file'}), 500
logger.info(f"[UPLOAD] File saved successfully. Size: {os.path.getsize(filepath)} bytes")
try:
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
logger.info(f"[UPLOAD] Processing with model: {model_choice}")
output_path_url = safe_video_processing(filepath, model_choice)
logger.info(f"[UPLOAD] Processing complete. Output URL: {output_path_url}")
output_path = os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))
if not os.path.exists(output_path):
logger.error(f"[UPLOAD] Output file not found: {output_path}")
return jsonify({'error': 'Output video file not found'}), 500
return jsonify({
'message': f'Video processed successfully with {model_choice}',
'output_path': output_path_url
})
except Exception as e:
logger.error(f"[UPLOAD] Error processing video: {str(e)}")
logger.error(traceback.format_exc())
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
finally:
try:
if os.path.exists(filepath):
os.remove(filepath)
logger.info(f"[UPLOAD] Cleaned up input file: {filepath}")
except Exception as e:
logger.error(f"[UPLOAD] Error cleaning up file: {str(e)}")
except Exception as e:
logger.error(f"[UPLOAD] Unexpected error: {str(e)}")
logger.error(traceback.format_exc())
return jsonify({'error': 'Internal server error'}), 500
finally:
cleanup_memory()
# Add more specific error handlers
@app.errorhandler(413)
def request_entity_too_large(error):
logger.error(f"File too large: {error}")
return jsonify({'error': 'File too large. Maximum size is 100MB'}), 413
@app.errorhandler(500)
def internal_server_error(error):
logger.error(f"Internal server error: {error}")
return jsonify({'error': 'Internal server error. Please try again later.'}), 500
@app.errorhandler(404)
def not_found_error(error):
logger.error(f"Resource not found: {error}")
return jsonify({'error': 'Resource not found'}), 404
if __name__ == '__main__':
# Ensure the port is 7860 and debug is False for HF Spaces deployment
app.run(host='0.0.0.0', port=7860, debug=False) |