Sean Carnahan
Patch for Hugging Face Spaces: fix matplotlib config, check .gitignore, prep for model file inclusion
f20fe1f
from flask import Flask, render_template, request, jsonify, send_from_directory, url_for
from flask_cors import CORS
import cv2
import torch
import numpy as np
import os
from werkzeug.utils import secure_filename
import sys
import traceback
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Add bodybuilding_pose_analyzer to path
sys.path.append('.') # Assuming app.py is at the root of cv.github.io
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
app = Flask(__name__, static_url_path='/static', static_folder='static')
CORS(app, resources={r"/*": {"origins": "*"}})
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
try:
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
except PermissionError:
pass # Ignore if we can't create it (e.g., on HF Spaces)
# Load CNN model for bodybuilding pose classification
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
cnn_model = load_model(cnn_model_path)
cnn_class_labels = ['Side Chest', 'Front Double Biceps', 'Back Double Biceps', 'Front Lat Spread', 'Back Lat Spread']
def predict_pose_cnn(img_path):
img = image.load_img(img_path, target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = cnn_model.predict(img_array)
predicted_class = np.argmax(predictions, axis=1)
confidence = float(np.max(predictions))
return cnn_class_labels[predicted_class[0]], confidence
@app.route('/static/uploads/<path:filename>')
def serve_video(filename):
response = send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=False)
# Ensure correct content type, especially for Safari/iOS if issues arise
if filename.lower().endswith('.mp4'):
response.headers['Content-Type'] = 'video/mp4'
return response
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,X-Requested-With,Accept')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
def process_video_movenet(video_path, model_variant='lightning', pose_type='front_double_biceps'):
try:
print(f"[PROCESS_VIDEO_MOVENET] Called with video_path: {video_path}, model_variant: {model_variant}, pose_type: {pose_type}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = MoveNetAnalyzer(model_name=model_variant)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video with MoveNet ({model_variant}): {width}x{height} @ {fps}fps")
output_filename = f'output_movenet_{model_variant}.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
current_pose = pose_type # Initialized (e.g., to 'front_double_biceps')
segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames
cnn_pose = None
last_valid_landmarks = None
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect pose and get landmarks, reusing last valid landmarks if needed
frame_with_pose, landmarks_analysis, landmarks = analyzer.process_frame(frame, current_pose, last_valid_landmarks=last_valid_landmarks)
if landmarks:
last_valid_landmarks = landmarks
# Every 4 seconds, classify the pose (rule-based and CNN)
if (frame_count - 1) % segment_length == 0:
if landmarks:
detected_pose = analyzer.classify_pose(landmarks)
print(f"[AUTO-POSE] Frame {frame_count}: Detected pose: {detected_pose}")
current_pose = detected_pose
else:
print(f"[AUTO-POSE] Frame {frame_count}: No landmarks detected, keeping previous pose: {current_pose}")
# CNN prediction (every 4 seconds)
temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg'
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
if cnn_conf >= 0.3:
current_pose = cnn_pose_pred # <--- HERE current_pose is updated
except Exception as e:
print(f"[CNN] Error predicting pose: {e}")
cnn_pose_pred, cnn_conf = None, 0.0
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Determine best pose
if cnn_conf >= 0.3:
best_pose = cnn_pose_pred
elif landmarks:
best_pose = analyzer.classify_pose(landmarks)
else:
best_pose = 'Uncertain'
# Analyze using the current pose
analysis = analyzer.analyze_pose(landmarks, current_pose) if landmarks else {'error': 'No pose detected'}
# Overlay results
y_offset = 90
if 'error' not in analysis:
display_model_name = f"Gladiator {model_variant.capitalize()}"
cv2.putText(frame_with_pose, f"Model: {display_model_name}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
for joint, angle in analysis.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(frame_with_pose, text_to_display,
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_offset += 25
for correction in analysis.get('corrections', []):
cv2.putText(frame_with_pose, correction,
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
y_offset += 25
else:
cv2.putText(frame_with_pose, analysis['error'],
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
out.write(frame_with_pose)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MoveNet")
print(f"MoveNet video processing completed. Processed {frame_count} frames. Output: {output_path}")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_movenet: {e}')
traceback.print_exc()
raise
def process_video_mediapipe(video_path):
try:
print(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
analyzer = PoseAnalyzer()
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Processing video with MediaPipe: {width}x{height} @ {fps}fps")
output_filename = f'output_mediapipe.mp4'
output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename)
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
cnn_pose = None
segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames
last_valid_landmarks = None
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Detect pose and analyze, reusing last valid landmarks if needed
frame_with_pose, analysis, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
if landmarks:
last_valid_landmarks = landmarks
# Every 4 seconds, classify the pose using CNN
if (frame_count - 1) % segment_length == 0:
temp_img_path = 'temp_frame_for_cnn.jpg'
cv2.imwrite(temp_img_path, frame)
try:
cnn_pose, cnn_conf = predict_pose_cnn(temp_img_path)
print(f"[CNN] Confidence: {cnn_conf:.3f} for pose: {cnn_pose}")
except Exception as e:
print(f"[CNN] Error predicting pose: {e}")
cnn_pose, cnn_conf = None, 0.0
if os.path.exists(temp_img_path):
os.remove(temp_img_path)
# Determine best pose
if cnn_conf >= 0.3:
best_pose = cnn_pose
else:
best_pose = 'Uncertain'
# Overlay results
y_offset = 30
cv2.putText(frame_with_pose, f"Model: Gladiator SupaDot", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
y_offset += 30
cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
y_offset += 30
if 'error' not in analysis:
for joint, angle in analysis.get('angles', {}).items():
text_to_display = f"{joint.capitalize()}: {angle:.1f} deg"
cv2.putText(frame_with_pose, text_to_display, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_offset += 25
for correction in analysis.get('corrections', []):
cv2.putText(frame_with_pose, correction, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
y_offset += 25
else:
cv2.putText(frame_with_pose, analysis['error'], (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
out.write(frame_with_pose)
cap.release()
out.release()
if frame_count == 0:
raise ValueError("No frames were processed from the video by MediaPipe")
print(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
return url_for('serve_video', filename=output_filename, _external=False)
except Exception as e:
print(f'Error in process_video_mediapipe: {e}')
traceback.print_exc()
raise
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_file():
try:
if 'video' not in request.files:
return jsonify({'error': 'No video file provided'}), 400
file = request.files['video']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if file:
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
print(f"File saved to: {filepath}")
try:
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
if model_choice == 'movenet':
movenet_variant = request.form.get('movenet_variant', 'lightning')
output_path_url = process_video_movenet(filepath, model_variant=movenet_variant)
else:
output_path_url = process_video_mediapipe(filepath)
print(f"[DEBUG] Generated video URL for client: {output_path_url}")
return jsonify({
'message': f'Video processed successfully with {model_choice}',
'output_path': output_path_url
})
except Exception as e:
print(f"Error processing video: {e}")
traceback.print_exc()
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
finally:
if os.path.exists(filepath):
os.remove(filepath)
except Exception as e:
print(f"Error in upload_file: {e}")
traceback.print_exc()
return jsonify({'error': 'Internal server error'}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)