Ben Wolfson commited on
Commit
f335d81
·
1 Parent(s): a657511

Update CNN.ipynb

Browse files
Files changed (1) hide show
  1. CNN.ipynb +38 -17
CNN.ipynb CHANGED
@@ -133,7 +133,7 @@
133
  },
134
  {
135
  "cell_type": "code",
136
- "execution_count": 58,
137
  "metadata": {},
138
  "outputs": [
139
  {
@@ -141,30 +141,29 @@
141
  "output_type": "stream",
142
  "text": [
143
  "Found 448 images belonging to 3 classes.\n",
 
144
  "Found 101 images belonging to 3 classes.\n"
145
  ]
146
  },
147
  {
148
- "ename": "ValueError",
149
- "evalue": "in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n",
150
  "output_type": "error",
151
  "traceback": [
152
  "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
153
- "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
154
- "\u001b[1;32m<ipython-input-58-08697642c99a>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 99\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;31m# entry point, run the test harness\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 101\u001b[1;33m \u001b[0mrun_test_harness\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
155
- "\u001b[1;32m<ipython-input-58-08697642c99a>\u001b[0m in \u001b[0;36mrun_test_harness\u001b[1;34m()\u001b[0m\n\u001b[0;32m 90\u001b[0m class_mode='binary', batch_size=64, target_size=(150, 150))\n\u001b[0;32m 91\u001b[0m \u001b[1;31m# fit model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 92\u001b[1;33m history = model.fit(train_it, steps_per_epoch=len(train_it),\n\u001b[0m\u001b[0;32m 93\u001b[0m validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n\u001b[0;32m 94\u001b[0m \u001b[1;31m# evaluate model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
156
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 106\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 107\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 108\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 109\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 110\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
157
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1096\u001b[0m batch_size=batch_size):\n\u001b[0;32m 1097\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1098\u001b[1;33m \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1099\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1100\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
158
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 778\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 779\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"nonXla\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 780\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 781\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 782\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
159
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 821\u001b[0m \u001b[1;31m# This is the first call of __call__, so we have to initialize.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 822\u001b[0m \u001b[0minitializers\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 823\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initialize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0madd_initializers_to\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0minitializers\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 824\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 825\u001b[0m \u001b[1;31m# At this point we know that the initialization is complete (or less\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
160
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 694\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph_deleter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mFunctionDeleter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lifted_initializer_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 695\u001b[0m self._concrete_stateful_fn = (\n\u001b[1;32m--> 696\u001b[1;33m self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access\n\u001b[0m\u001b[0;32m 697\u001b[0m *args, **kwds))\n\u001b[0;32m 698\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
161
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_get_concrete_function_internal_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2853\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2854\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2855\u001b[1;33m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2856\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2857\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
162
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_maybe_define_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 3211\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3212\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmissed\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcall_context_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3213\u001b[1;33m \u001b[0mgraph_function\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_create_graph_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3214\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprimary\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcache_key\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3215\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
163
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_create_graph_function\u001b[1;34m(self, args, kwargs, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 3063\u001b[0m \u001b[0marg_names\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbase_arg_names\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mmissing_arg_names\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3064\u001b[0m graph_function = ConcreteFunction(\n\u001b[1;32m-> 3065\u001b[1;33m func_graph_module.func_graph_from_py_func(\n\u001b[0m\u001b[0;32m 3066\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_python_function\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
164
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 984\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moriginal_func\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_decorator\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munwrap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpython_func\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 985\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 986\u001b[1;33m \u001b[0mfunc_outputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpython_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mfunc_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mfunc_kwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 987\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 988\u001b[0m \u001b[1;31m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
165
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36mwrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 598\u001b[0m \u001b[1;31m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 599\u001b[0m \u001b[1;31m# the function a weak reference to itself to avoid a reference cycle.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 600\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__wrapped__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 601\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mweakref\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mref\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwrapped_fn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 602\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
166
- "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 971\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint:disable=broad-except\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 972\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ag_error_metadata\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 973\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mag_error_metadata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto_exception\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 974\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 975\u001b[0m \u001b[1;32mraise\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
167
- "\u001b[1;31mValueError\u001b[0m: in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n"
168
  ]
169
  }
170
  ],
@@ -182,6 +181,10 @@
182
  "from keras.layers import Dropout\n",
183
  "from keras.optimizers import SGD\n",
184
  "from keras.preprocessing.image import ImageDataGenerator\n",
 
 
 
 
185
  " \n",
186
  "# one block VGG\n",
187
  "\"\"\"\n",
@@ -213,6 +216,22 @@
213
  " model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n",
214
  " return model\n",
215
  "\"\"\"\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
  "# three block VGG\n",
217
  "def define_model():\n",
218
  "\n",
@@ -231,6 +250,8 @@
231
  " metrics=['accuracy'])\n",
232
  " return cnn1\n",
233
  "\n",
 
 
234
  "# plot diagnostic learning curves\n",
235
  "def summarize_diagnostics(history):\n",
236
  " # plot loss\n",
@@ -256,9 +277,9 @@
256
  " datagen = ImageDataGenerator(rescale=1.0/255.0)\n",
257
  " # prepare iterators\n",
258
  " train_it = datagen.flow_from_directory('dataset/train/',\n",
259
- " class_mode='binary', batch_size=64, target_size=(150, 150))\n",
260
  " test_it = datagen.flow_from_directory('dataset/test/',\n",
261
- " class_mode='binary', batch_size=64, target_size=(150, 150))\n",
262
  " # fit model\n",
263
  " history = model.fit(train_it, steps_per_epoch=len(train_it),\n",
264
  " validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n",
 
133
  },
134
  {
135
  "cell_type": "code",
136
+ "execution_count": 70,
137
  "metadata": {},
138
  "outputs": [
139
  {
 
141
  "output_type": "stream",
142
  "text": [
143
  "Found 448 images belonging to 3 classes.\n",
144
+ "1\n",
145
  "Found 101 images belonging to 3 classes.\n"
146
  ]
147
  },
148
  {
149
+ "ename": "InvalidArgumentError",
150
+ "evalue": " Matrix size-incompatible: In[0]: [128,3], In[1]: [128,1]\n\t [[node gradient_tape/sequential_21/dense_41/MatMul (defined at <ipython-input-70-ca63fab2532d>:115) ]] [Op:__inference_train_function_17586]\n\nFunction call stack:\ntrain_function\n",
151
  "output_type": "error",
152
  "traceback": [
153
  "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
154
+ "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)",
155
+ "\u001b[1;32m<ipython-input-70-ca63fab2532d>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 122\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[1;31m# entry point, run the test harness\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 124\u001b[1;33m \u001b[0mrun_test_harness\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
156
+ "\u001b[1;32m<ipython-input-70-ca63fab2532d>\u001b[0m in \u001b[0;36mrun_test_harness\u001b[1;34m()\u001b[0m\n\u001b[0;32m 113\u001b[0m class_mode='categorical', batch_size=128, target_size=(150, 150))\n\u001b[0;32m 114\u001b[0m \u001b[1;31m# fit model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 115\u001b[1;33m history = model.fit(train_it, steps_per_epoch=len(train_it),\n\u001b[0m\u001b[0;32m 116\u001b[0m validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n\u001b[0;32m 117\u001b[0m \u001b[1;31m# evaluate model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
157
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 106\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 107\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 108\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 109\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 110\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
158
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1096\u001b[0m batch_size=batch_size):\n\u001b[0;32m 1097\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1098\u001b[1;33m \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1099\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1100\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
159
  "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 778\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 779\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"nonXla\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 780\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 781\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 782\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
160
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 838\u001b[0m \u001b[1;31m# Lifting succeeded, so variables are initialized and we can run the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 839\u001b[0m \u001b[1;31m# stateless function.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 840\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 841\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 842\u001b[0m \u001b[0mcanon_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcanon_kwds\u001b[0m \u001b[1;33m=\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
161
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2827\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2828\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2829\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_filtered_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2830\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2831\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
162
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_filtered_call\u001b[1;34m(self, args, kwargs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1841\u001b[0m \u001b[0;31m`\u001b[0m\u001b[0margs\u001b[0m\u001b[0;31m`\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1842\u001b[0m \"\"\"\n\u001b[1;32m-> 1843\u001b[1;33m return self._call_flat(\n\u001b[0m\u001b[0;32m 1844\u001b[0m [t for t in nest.flatten((args, kwargs), expand_composites=True)\n\u001b[0;32m 1845\u001b[0m if isinstance(t, (ops.Tensor,\n",
163
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1921\u001b[0m and executing_eagerly):\n\u001b[0;32m 1922\u001b[0m \u001b[1;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1923\u001b[1;33m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[0;32m 1924\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0;32m 1925\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n",
164
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36mcall\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 543\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 544\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 545\u001b[1;33m outputs = execute.execute(\n\u001b[0m\u001b[0;32m 546\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 547\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
165
+ "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 57\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 59\u001b[1;33m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[0;32m 60\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 61\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
166
+ "\u001b[1;31mInvalidArgumentError\u001b[0m: Matrix size-incompatible: In[0]: [128,3], In[1]: [128,1]\n\t [[node gradient_tape/sequential_21/dense_41/MatMul (defined at <ipython-input-70-ca63fab2532d>:115) ]] [Op:__inference_train_function_17586]\n\nFunction call stack:\ntrain_function\n"
 
 
167
  ]
168
  }
169
  ],
 
181
  "from keras.layers import Dropout\n",
182
  "from keras.optimizers import SGD\n",
183
  "from keras.preprocessing.image import ImageDataGenerator\n",
184
+ "from keras.models import Sequential\n",
185
+ "from keras.layers import Dense, Dropout, Flatten\n",
186
+ "from keras.layers import Conv2D, MaxPooling2D\n",
187
+ "\n",
188
  " \n",
189
  "# one block VGG\n",
190
  "\"\"\"\n",
 
216
  " model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n",
217
  " return model\n",
218
  "\"\"\"\n",
219
+ "\n",
220
+ "\n",
221
+ "def define_model():\n",
222
+ " model = Sequential()\n",
223
+ " model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))\n",
224
+ " model.add(MaxPooling2D((2, 2)))\n",
225
+ " model.add(Dropout(0.2))\n",
226
+ " model.add(Flatten())\n",
227
+ " model.add(Dense(128, activation='relu'))\n",
228
+ " model.add(Dense(1, activation='softmax'))\n",
229
+ " # compile model\n",
230
+ " #opt = SGD(lr=0.001, momentum=0.9)\n",
231
+ " model.compile(optimizer=keras.optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy'])\n",
232
+ " return model\n",
233
+ "\n",
234
+ "\"\"\"\n",
235
  "# three block VGG\n",
236
  "def define_model():\n",
237
  "\n",
 
250
  " metrics=['accuracy'])\n",
251
  " return cnn1\n",
252
  "\n",
253
+ "\"\"\"\n",
254
+ "\n",
255
  "# plot diagnostic learning curves\n",
256
  "def summarize_diagnostics(history):\n",
257
  " # plot loss\n",
 
277
  " datagen = ImageDataGenerator(rescale=1.0/255.0)\n",
278
  " # prepare iterators\n",
279
  " train_it = datagen.flow_from_directory('dataset/train/',\n",
280
+ " class_mode='categorical', batch_size=128, target_size=(150, 150))\n",
281
  " test_it = datagen.flow_from_directory('dataset/test/',\n",
282
+ " class_mode='categorical', batch_size=128, target_size=(150, 150))\n",
283
  " # fit model\n",
284
  " history = model.fit(train_it, steps_per_epoch=len(train_it),\n",
285
  " validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n",