Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile, File, HTTPException | |
from tensorflow.keras.models import load_model, Sequential | |
from tensorflow.keras.layers import Dense, LSTM | |
from tensorflow.keras.optimizers import Adam | |
from sklearn.preprocessing import MinMaxScaler | |
import numpy as np | |
import tempfile | |
import os | |
app = FastAPI() | |
async def predict(model: UploadFile = File(...), data: str = None): | |
try: | |
# Save the uploaded model to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: | |
temp_model_file.write(await model.read()) | |
temp_model_path = temp_model_file.name | |
# Load the model | |
model = load_model(temp_model_path, compile=False) | |
# Process the data | |
data = np.array(eval(data)).reshape(1, 12, 1) | |
predictions = model.predict(data).tolist() | |
return {"predictions": predictions} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def retrain(model: UploadFile = File(...), data: UploadFile = File(...)): | |
try: | |
# Save the uploaded model and data to temporary files | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: | |
temp_model_file.write(await model.read()) | |
temp_model_path = temp_model_file.name | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as temp_data_file: | |
temp_data_file.write(await data.read()) | |
temp_data_path = temp_data_file.name | |
# Load the model and data | |
model = load_model(temp_model_path, compile=False) | |
dataset = np.load(temp_data_path) | |
# Normalize the data | |
scaler = MinMaxScaler() | |
dataset_normalized = scaler.fit_transform(dataset) | |
# Retrain the model | |
x_train = [] | |
y_train = [] | |
for i in range(12, len(dataset_normalized)): | |
x_train.append(dataset_normalized[i-12:i, 0]) | |
y_train.append(dataset_normalized[i, 0]) | |
x_train = np.array(x_train).reshape(-1, 12, 1) | |
y_train = np.array(y_train) | |
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", run_eagerly=True) | |
model.fit(x_train, y_train, epochs=10, batch_size=32) | |
# Save the updated model to a temporary file | |
updated_model_path = temp_model_path.replace(".h5", "_updated.h5") | |
model.save(updated_model_path) | |
return {"message": "Model retrained successfully.", "updated_model_path": updated_model_path} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
finally: | |
# Clean up temporary files | |
if os.path.exists(temp_model_path): | |
os.remove(temp_model_path) | |
if os.path.exists(temp_data_path): | |
os.remove(temp_data_path) | |