sdafd's picture
Create app.py
20b9e25 verified
import os
import time
import json
import random
import string
import pathlib
import tempfile
import logging
import torch
import whisperx
import librosa
import numpy as np
import requests
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
app = FastAPI(title="WhisperX API")
# -------------------------------
# Logging and Model Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_api")
device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())
# Pre-load models for different sizes
models = {
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
"small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='silero'),
"large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
"large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
"large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}
def seconds_to_srt_time(seconds: float) -> str:
"""Convert seconds (float) into SRT timestamp format (HH:MM:SS,mmm)."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds - int(seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
# -------------------------------
# Vocal Extraction Function
# -------------------------------
def get_vocals(input_file):
try:
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_content = pathlib.Path(input_file).read_bytes()
file_len = len(file_content)
r = requests.post(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}',
files={'files': open(input_file, 'rb')}
)
json_data = r.json()
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.5',
'content-type': 'application/json',
'origin': 'https://politrees-audio-separator-uvr.hf.space',
'priority': 'u=1, i',
'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'sec-fetch-storage-access': 'none',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
}
params = {
'__theme': 'system',
}
json_payload = {
'data': [
{
'path': json_data[0],
'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file=' + json_data[0],
'orig_name': pathlib.Path(input_file).name,
'size': file_len,
'mime_type': 'audio/wav',
'meta': {'_type': 'gradio.FileData'},
},
'MelBand Roformer | Vocals by Kimberley Jensen',
256,
False,
5,
0,
'/tmp/audio-separator-models/',
'output',
'wav',
0.9,
0,
1,
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
],
'event_data': None,
'fn_index': 5,
'trigger_id': 28,
'session_hash': session_hash,
}
response = requests.post(
'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
params=params,
headers=headers,
json=json_payload,
)
max_retries = 5
retry_delay = 5
retry_count = 0
while retry_count < max_retries:
try:
logger.info(f"Connecting to stream... Attempt {retry_count + 1}")
r = requests.get(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
stream=True
)
if r.status_code != 200:
raise Exception(f"Failed to connect: HTTP {r.status_code}")
logger.info("Connected successfully.")
for line in r.iter_lines():
if line:
json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
logger.info(json_resp)
if 'process_completed' in json_resp['msg']:
logger.info("Process completed.")
output_url = json_resp['output']['data'][1]['url']
logger.info(f"Output URL: {output_url}")
return output_url
logger.info("Stream ended prematurely. Reconnecting...")
except Exception as e:
logger.error(f"Error occurred: {e}. Retrying...")
retry_count += 1
time.sleep(retry_delay)
logger.error("Max retries reached. Exiting.")
return None
except Exception as ex:
logger.error(f"Unexpected error in get_vocals: {ex}")
return None
def split_audio_by_pause(audio, sr, pause_threshold, top_db=30, energy_threshold=0.03):
intervals = librosa.effects.split(audio, top_db=top_db)
merged_intervals = []
current_start, current_end = intervals[0]
for start, end in intervals[1:]:
gap_duration = (start - current_end) / sr
if gap_duration < pause_threshold:
current_end = end
else:
merged_intervals.append((current_start, current_end))
current_start, current_end = start, end
merged_intervals.append((current_start, current_end))
# Filter out segments with low average RMS energy
filtered_intervals = []
for start, end in merged_intervals:
segment = audio[start:end]
rms = np.mean(librosa.feature.rms(y=segment))
if rms >= energy_threshold:
filtered_intervals.append((start, end))
return filtered_intervals
# -------------------------------
# Main Transcription Function
# -------------------------------
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
start_time = time.time()
srt_output = ""
debug_log = []
subtitle_index = 1
try:
# Optionally extract vocals first
if vocal_extraction:
debug_log.append("Vocal extraction enabled; processing input file for vocals...")
extracted_url = get_vocals(audio_file)
if extracted_url is not None:
debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
response = requests.get(extracted_url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(response.content)
audio_file = tmp.name
debug_log.append("Extracted audio downloaded and saved for transcription.")
else:
debug_log.append("Failed to download extracted audio; proceeding with original file.")
else:
debug_log.append("Vocal extraction failed; proceeding with original audio.")
# Load audio file (resampled to 16kHz)
audio, sr = librosa.load(audio_file, sr=16000)
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds at {sr} Hz")
# Select model and set batch size
model = models[model_size]
batch_size = 8 if model_size == "tiny" else 4
# Transcribe using specified language (or auto-detect)
if language:
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
else:
transcript = model.transcribe(audio, batch_size=batch_size)
language = transcript.get("language", "unknown")
# Load alignment model for the given language
model_a, metadata = whisperx.load_align_model(language_code=language, device=device)
if pause_threshold > 0:
segments = split_audio_by_pause(audio, sr, pause_threshold)
debug_log.append(f"Audio split into {len(segments)} segment(s) using pause threshold of {pause_threshold}s")
for seg_idx, (seg_start, seg_end) in enumerate(segments):
audio_segment = audio[seg_start:seg_end]
seg_duration = (seg_end - seg_start) / sr
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
seg_aligned = whisperx.align(
seg_transcript["segments"], model_a, metadata, audio_segment, device
)
for segment in seg_aligned["segments"]:
for word in segment["words"]:
adjusted_start = word['start'] + seg_start/sr
adjusted_end = word['end'] + seg_start/sr
start_timestamp = seconds_to_srt_time(adjusted_start)
end_timestamp = seconds_to_srt_time(adjusted_end)
srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
subtitle_index += 1
else:
# Process the entire audio without splitting
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
aligned = whisperx.align(
transcript["segments"], model_a, metadata, audio, device
)
for segment in aligned["segments"]:
for word in segment["words"]:
start_timestamp = seconds_to_srt_time(word['start'])
end_timestamp = seconds_to_srt_time(word['end'])
srt_output += f"{subtitle_index}\n{start_timestamp} --> {end_timestamp}\n{word['word']}\n\n"
subtitle_index += 1
debug_log.append(f"Language used: {language}")
debug_log.append(f"Batch size: {batch_size}")
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
except Exception as e:
logger.error("Error during transcription:", exc_info=True)
srt_output = "Error occurred during transcription"
debug_log.append(f"ERROR: {str(e)}")
if debug:
return srt_output, "\n".join(debug_log)
return srt_output
# -------------------------------
# FastAPI Endpoints
# -------------------------------
@app.post("/transcribe")
async def transcribe_endpoint(
audio_file: UploadFile = File(...),
model_size: str = Form("base"),
debug: bool = Form(False),
pause_threshold: float = Form(0.0),
vocal_extraction: bool = Form(False),
language: str = Form("en")
):
try:
# Save the uploaded file to a temporary location
suffix = pathlib.Path(audio_file.filename).suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
tmp.write(await audio_file.read())
tmp_path = tmp.name
result = transcribe(tmp_path, model_size=model_size, debug=debug,
pause_threshold=pause_threshold,
vocal_extraction=vocal_extraction,
language=language)
os.remove(tmp_path)
if debug:
srt_text, debug_info = result
return JSONResponse(content={"srt": srt_text, "debug": debug_info})
else:
return JSONResponse(content={"srt": result})
except Exception as e:
logger.error(f"Error in transcribe_endpoint: {e}", exc_info=True)
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/")
async def root():
return {"message": "WhisperX API is running."}