LangScene-X / app.py
seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
import gradio as gr
import torch
import os
# Function to check if the model is loaded
model = None
def load_model(model_path):
global model
if os.path.exists(model_path):
model = torch.hub.load(model_path, 'StableNormal', trust_repo=True)
return 'Model loaded successfully!'
else:
return 'Error: Model path does not exist.'
# Function to process input and generate output
def process_input(image, model_path):
if model is None:
return 'Error: Model not loaded. Please load the model first.'
try:
# Simulate processing the image with the model
# This should be replaced with actual model inference code
output = f'Processed image with model at {model_path}'
return output
except Exception as e:
return f'Error during processing: {str(e)}'
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# LangScene-X Gradio Interface
This app allows you to load a model and process images using the LangScene-X framework.
**Instructions:**
1. Load the model by providing the model path.
2. Upload an image to process.
3. Click on 'Process Image' to see the output.
""")
model_path = gr.Textbox(label='Model Path', placeholder='Enter the path to the model')
load_button = gr.Button('Load Model')
load_output = gr.Textbox(label='Load Model Output')
load_button.click(load_model, inputs=model_path, outputs=load_output)
image_input = gr.Image(type='pil', label='Upload Image')
process_button = gr.Button('Process Image')
output_text = gr.Textbox(label='Output')
process_button.click(process_input, inputs=[image_input, model_path], outputs=output_text)
# Launch the app
if __name__ == '__main__':
demo.launch()