Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
# Function to check if the model is loaded | |
model = None | |
def load_model(model_path): | |
global model | |
if os.path.exists(model_path): | |
model = torch.hub.load(model_path, 'StableNormal', trust_repo=True) | |
return 'Model loaded successfully!' | |
else: | |
return 'Error: Model path does not exist.' | |
# Function to process input and generate output | |
def process_input(image, model_path): | |
if model is None: | |
return 'Error: Model not loaded. Please load the model first.' | |
try: | |
# Simulate processing the image with the model | |
# This should be replaced with actual model inference code | |
output = f'Processed image with model at {model_path}' | |
return output | |
except Exception as e: | |
return f'Error during processing: {str(e)}' | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# LangScene-X Gradio Interface | |
This app allows you to load a model and process images using the LangScene-X framework. | |
**Instructions:** | |
1. Load the model by providing the model path. | |
2. Upload an image to process. | |
3. Click on 'Process Image' to see the output. | |
""") | |
model_path = gr.Textbox(label='Model Path', placeholder='Enter the path to the model') | |
load_button = gr.Button('Load Model') | |
load_output = gr.Textbox(label='Load Model Output') | |
load_button.click(load_model, inputs=model_path, outputs=load_output) | |
image_input = gr.Image(type='pil', label='Upload Image') | |
process_button = gr.Button('Process Image') | |
output_text = gr.Textbox(label='Output') | |
process_button.click(process_input, inputs=[image_input, model_path], outputs=output_text) | |
# Launch the app | |
if __name__ == '__main__': | |
demo.launch() |