LangScene-X / auto-seg /auto-mask-align.py
seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
import argparse
import os
import random
import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from PIL import Image
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from tqdm import tqdm
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor
def show_anns(anns, borders=True):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.5]])
img[m] = color_mask
if borders:
import cv2
contours, _ = cv2.findContours(m.astype(np.uint8),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
cv2.drawContours(img, contours, -1, (0,0,1,0.4), thickness=1)
ax.imshow(img)
def mask_nms(masks, scores, iou_thr=0.7, score_thr=0.1, inner_thr=0.2, **kwargs):
"""
Perform mask non-maximum suppression (NMS) on a set of masks based on their scores.
Args:
masks (torch.Tensor): has shape (num_masks, H, W)
scores (torch.Tensor): The scores of the masks, has shape (num_masks,)
iou_thr (float, optional): The threshold for IoU.
score_thr (float, optional): The threshold for the mask scores.
inner_thr (float, optional): The threshold for the overlap rate.
**kwargs: Additional keyword arguments.
Returns:
selected_idx (torch.Tensor): A tensor representing the selected indices of the masks after NMS.
"""
scores, idx = scores.sort(0, descending=True)
num_masks = idx.shape[0]
masks_ord = masks[idx.view(-1), :]
masks_area = torch.sum(masks_ord, dim=(1, 2), dtype=torch.float)
mask_chunk_size = 20
mask_chunks = masks_ord.split(mask_chunk_size, dim=0)
area_chunks = masks_area.split(mask_chunk_size, dim=0)
iou_matrix = []
inner_iou_matrix = []
for i_areas, i_chunk in zip(area_chunks, mask_chunks):
row_iou_matrix = []
row_inner_iou_matrix = []
for j_areas, j_chunk in zip(area_chunks, mask_chunks):
intersection = torch.logical_and(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
union = torch.logical_or(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
local_iou_mat = intersection / union
row_iou_matrix.append(local_iou_mat)
row_inter_mat = intersection / i_areas[:, None]
col_inter_mat = intersection / j_areas[None, :]
inter = torch.logical_and(row_inter_mat < 0.5, col_inter_mat >= 0.85)
local_inner_iou_mat = torch.zeros((len(i_areas), len(j_areas)))
local_inner_iou_mat[inter] = 1 - row_inter_mat[inter] * col_inter_mat[inter]
row_inner_iou_matrix.append(local_inner_iou_mat)
row_iou_matrix = torch.cat(row_iou_matrix, dim=1)
row_inner_iou_matrix = torch.cat(row_inner_iou_matrix, dim=1)
iou_matrix.append(row_iou_matrix)
inner_iou_matrix.append(row_inner_iou_matrix)
iou_matrix = torch.cat(iou_matrix, dim=0)
inner_iou_matrix = torch.cat(inner_iou_matrix, dim=0)
iou_matrix.triu_(diagonal=1)
iou_max, _ = iou_matrix.max(dim=0)
inner_iou_matrix_u = torch.triu(inner_iou_matrix, diagonal=1)
inner_iou_max_u, _ = inner_iou_matrix_u.max(dim=0)
inner_iou_matrix_l = torch.tril(inner_iou_matrix, diagonal=1)
inner_iou_max_l, _ = inner_iou_matrix_l.max(dim=0)
keep = iou_max <= iou_thr
keep_conf = scores > score_thr
keep_inner_u = inner_iou_max_u <= 1 - inner_thr
keep_inner_l = inner_iou_max_l <= 1 - inner_thr
if keep_conf.sum() == 0:
index = scores.topk(3).indices
keep_conf[index, 0] = True
if keep_inner_u.sum() == 0:
index = scores.topk(3).indices
keep_inner_u[index, 0] = True
if keep_inner_l.sum() == 0:
index = scores.topk(3).indices
keep_inner_l[index, 0] = True
keep *= keep_conf
keep *= keep_inner_u
keep *= keep_inner_l
selected_idx = idx[keep]
return selected_idx
def filter(keep: torch.Tensor, masks_result) -> None:
keep = keep.int().cpu().numpy()
result_keep = []
for i, m in enumerate(masks_result):
if i in keep: result_keep.append(m)
return result_keep
def masks_update(*args, **kwargs):
# remove redundant masks based on the scores and overlap rate between masks
masks_new = ()
for masks_lvl in (args):
if isinstance(masks_lvl, tuple):
masks_lvl = masks_lvl[0] # If it's a tuple, take the first element
if len(masks_lvl) == 0:
masks_new += (masks_lvl,)
continue
# Check if masks_lvl is a list of dictionaries
if isinstance(masks_lvl[0], dict):
seg_pred = torch.from_numpy(np.stack([m['segmentation'] for m in masks_lvl], axis=0))
iou_pred = torch.from_numpy(np.stack([m['predicted_iou'] for m in masks_lvl], axis=0))
stability = torch.from_numpy(np.stack([m['stability_score'] for m in masks_lvl], axis=0))
else:
# If it's a direct list of masks, use them directly
seg_pred = torch.from_numpy(np.stack(masks_lvl, axis=0))
# Create default values for cases without iou and stability
iou_pred = torch.ones(len(masks_lvl))
stability = torch.ones(len(masks_lvl))
scores = stability * iou_pred
keep_mask_nms = mask_nms(seg_pred, scores, **kwargs)
masks_lvl = filter(keep_mask_nms, masks_lvl)
masks_new += (masks_lvl,)
return masks_new
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab20")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def save_mask(mask,frame_idx,save_dir):
image_array = (mask * 255).astype(np.uint8)
# Create image object
image = Image.fromarray(image_array[0])
# Save image
image.save(os.path.join(save_dir,f'{frame_idx:03}.png'))
def save_masks(mask_list,frame_idx,save_dir):
os.makedirs(save_dir,exist_ok=True)
if len(mask_list[0].shape) == 3:
# Calculate dimensions for concatenated image
total_width = mask_list[0].shape[2] * len(mask_list)
max_height = mask_list[0].shape[1]
# Create large image
final_image = Image.new('RGB', (total_width, max_height))
for i, img in enumerate(mask_list):
img = Image.fromarray((img[0] * 255).astype(np.uint8)).convert("RGB")
final_image.paste(img, (i * img.width, 0))
final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))
else:
# Calculate dimensions for concatenated image
total_width = mask_list[0].shape[1] * len(mask_list)
max_height = mask_list[0].shape[0]
# Create large image
final_image = Image.new('RGB', (total_width, max_height))
for i, img in enumerate(mask_list):
img = Image.fromarray((img * 255).astype(np.uint8)).convert("RGB")
final_image.paste(img, (i * img.width, 0))
final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))
def save_masks_npy(mask_list,frame_idx,save_dir):
np.save(os.path.join(save_dir,f"mask_{frame_idx:03}.npy"),np.array(mask_list))
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def make_enlarge_bbox(origin_bbox, max_width,max_height,ratio):
width = origin_bbox[2]
height = origin_bbox[3]
new_box = [max(origin_bbox[0]-width*(ratio-1)/2,0),max(origin_bbox[1]-height*(ratio-1)/2,0)]
new_box.append(min(width*ratio,max_width-new_box[0]))
new_box.append(min(height*ratio,max_height-new_box[1]))
return new_box
def sample_points(masks, enlarge_bbox,positive_num=1,negtive_num=40):
ex, ey, ewidth, eheight = enlarge_bbox
positive_count = positive_num
negtive_count = negtive_num
output_points = []
while True:
x = int(np.random.uniform(ex, ex + ewidth))
y = int(np.random.uniform(ey, ey + eheight))
if masks[y][x]==True and positive_count>0:
output_points.append((x,y,1))
positive_count-=1
elif masks[y][x]==False and negtive_count>0:
output_points.append((x,y,0))
negtive_count-=1
if positive_count == 0 and negtive_count == 0:
break
return output_points
def sample_points_from_mask(mask):
# Get indices of all True values
true_indices = np.argwhere(mask)
# Check if there are any True values
if true_indices.size == 0:
raise ValueError("The mask does not contain any True values.")
# Randomly select a point from True value indices
random_index = np.random.choice(len(true_indices))
sample_point = true_indices[random_index]
return tuple(sample_point)
def search_new_obj(masks_from_prev, mask_list,other_masks_list=None,mask_ratio_thresh=0,ratio=0.5, area_threash = 5000):
new_mask_list = []
# Calculate mask_none, representing areas not included in any previous masks
mask_none = ~masks_from_prev[0].copy()[0]
for prev_mask in masks_from_prev[1:]:
mask_none &= ~prev_mask[0]
for mask in mask_list:
seg = mask['segmentation']
if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
new_mask_list.append(mask)
for mask in new_mask_list:
mask_none &= ~mask['segmentation']
logger.info(len(new_mask_list))
logger.info("now ratio:",mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) )
logger.info("expected ratios:",mask_ratio_thresh)
if other_masks_list is not None:
for mask in other_masks_list:
if mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) > mask_ratio_thresh: # Still a lot of gaps, greater than current thresh
seg = mask['segmentation']
if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
new_mask_list.append(mask)
mask_none &= ~seg
else:
break
logger.info(len(new_mask_list))
return new_mask_list
def get_bbox_from_mask(mask):
# Get row and column indices of non-zero elements
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
# Find min and max indices of non-zero rows and columns
ymin, ymax = np.where(rows)[0][[0, -1]]
xmin, xmax = np.where(cols)[0][[0, -1]]
# Calculate width and height
width = xmax - xmin + 1
height = ymax - ymin + 1
return xmin, ymin, width, height
def cal_no_mask_area_ratio(out_mask_list):
h = out_mask_list[0].shape[1]
w = out_mask_list[0].shape[2]
mask_none = ~out_mask_list[0].copy()
for prev_mask in out_mask_list[1:]:
mask_none &= ~prev_mask
return(mask_none.sum() / (h * w))
class Prompts:
def __init__(self,bs:int):
self.batch_size = bs
self.prompts = {}
self.obj_list = []
self.key_frame_list = []
self.key_frame_obj_begin_list = []
def add(self,obj_id,frame_id,mask):
if obj_id not in self.obj_list:
new_obj = True
self.prompts[obj_id] = []
self.obj_list.append(obj_id)
else:
new_obj = False
self.prompts[obj_id].append((frame_id,mask))
if frame_id not in self.key_frame_list and new_obj:
# import ipdb; ipdb.set_trace()
self.key_frame_list.append(frame_id)
self.key_frame_obj_begin_list.append(obj_id)
logger.info("key_frame_obj_begin_list:",self.key_frame_obj_begin_list)
def get_obj_num(self):
return len(self.obj_list)
def __len__(self):
if self.obj_list % self.batch_size == 0:
return len(self.obj_list) // self.batch_size
else:
return len(self.obj_list) // self.batch_size +1
def __iter__(self):
# self.batch_index = 0
self.start_idx = 0
self.iter_frameindex = 0
return self
def __next__(self):
if self.start_idx < len(self.obj_list):
if self.iter_frameindex == len(self.key_frame_list)-1:
end_idx = min(self.start_idx+self.batch_size, len(self.obj_list))
else:
if self.start_idx+self.batch_size < self.key_frame_obj_begin_list[self.iter_frameindex+1]:
end_idx = self.start_idx+self.batch_size
else:
end_idx = self.key_frame_obj_begin_list[self.iter_frameindex+1]
self.iter_frameindex+=1
# end_idx = min(self.start_idx+self.batch_size, self.key_frame_obj_begin_list[self.iter_frameindex+1])
batch_keys = self.obj_list[self.start_idx:end_idx]
batch_prompts = {key: self.prompts[key] for key in batch_keys}
self.start_idx = end_idx
return batch_prompts
# if self.batch_index * self.batch_size < len(self.obj_list):
# start_idx = self.batch_index * self.batch_size
# end_idx = min(start_idx + self.batch_size, len(self.obj_list))
# batch_keys = self.obj_list[start_idx:end_idx]
# batch_prompts = {key: self.prompts[key] for key in batch_keys}
# self.batch_index += 1
# return batch_prompts
else:
raise StopIteration
def get_video_segments(prompts_loader,predictor,inference_state,final_output=False):
video_segments = {}
for batch_prompts in tqdm(prompts_loader,desc="processing prompts\n"):
predictor.reset_state(inference_state)
for id, prompt_list in batch_prompts.items():
for prompt in prompt_list:
# import ipdb; ipdb.set_trace()
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state=inference_state,
frame_idx=prompt[0],
obj_id=id,
mask=prompt[1]
)
# start_frame_idx = 0 if final_output else None
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
if out_frame_idx not in video_segments:
video_segments[out_frame_idx] = { }
for i, out_obj_id in enumerate(out_obj_ids):
video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
if final_output:
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state,reverse=True):
for i, out_obj_id in enumerate(out_obj_ids):
video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
return video_segments
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--video_path",type=str,required=True)
parser.add_argument("--output_dir",type=str,required=True)
parser.add_argument("--level",choices=['default','small','middle','large'])
parser.add_argument("--batch_size",type=int,default=20)
parser.add_argument("--sam1_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam/sam_vit_h_4b8939.pth")
parser.add_argument("--sam2_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam2/sam2_hiera_large.pt")
parser.add_argument("--detect_stride",type=int,default=10)
parser.add_argument("--use_other_level",type=int,default=1)
parser.add_argument("--postnms",type=int,default=1)
parser.add_argument("--pred_iou_thresh",type=float,default=0.7)
parser.add_argument("--box_nms_thresh",type=float,default=0.7)
parser.add_argument("--stability_score_thresh",type=float,default=0.85)
parser.add_argument("--reverse", action="store_true")
level_dict = {
"default": 0,
"small": 1,
"middle": 2,
"large": 3
}
args = parser.parse_args()
logger.add(os.path.join(args.output_dir,f'{args.level}.log'), rotation="500 MB")
logger.info(args)
video_dir = args.video_path
level = args.level
base_dir = args.output_dir
##### load Sam2 and Sam1 Model #####
sam2_checkpoint = args.sam2_checkpoint
model_cfg = "sam2_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2 = build_sam2(model_cfg, sam2_checkpoint, device='cuda', apply_postprocessing=False)
sam_ckpt_path = args.sam1_checkpoint
sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt_path).to('cuda')
mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=32,
pred_iou_thresh=args.pred_iou_thresh,
box_nms_thresh=args.box_nms_thresh,
stability_score_thresh=args.stability_score_thresh,
crop_n_layers=1,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
]
try:
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]), reverse=args.reverse)
except:
frame_names.sort(key=lambda p: os.path.splitext(p)[0], reverse=args.reverse)
now_frame = 0
inference_state = predictor.init_state(video_path=video_dir)
masks_from_prev = []
sum_id = 0 # Record total number of objects
prompts_loader = Prompts(bs=args.batch_size) # hold all the clicks we add for visualization
while True:
logger.info(f"frame: {now_frame}")
sum_id = prompts_loader.get_obj_num()
image_path = os.path.join(video_dir,frame_names[now_frame])
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# resize if the input is too large:
orig_h, orig_w = image.shape[:2]
if orig_h > 1080:
logger.info("Resizing original image to 1080P...")
scale = 1080 / orig_h
h = int(orig_h * scale)
w = int(orig_w * scale)
image = cv2.resize(image, (w, h))
# Generate only large masks
# masks_l = mask_generator.generate_l(image)
all_masks = mask_generator.generate(image)
masks = all_masks[level_dict[args.level]]
# masks_l = mask_generator.generate(image)
if args.postnms:
# # Pass masks_l directly, no need to wrap in tuple
# # masks_l = masks_update(masks_l, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]
masks = masks_update(masks, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]
# Use large level masks
# masks = masks_l
other_masks = None
if not args.use_other_level:
other_masks = None
if now_frame == 0: # first frame
ann_obj_id_list = range(len(masks))
for ann_obj_id in tqdm(ann_obj_id_list):
seg = masks[ann_obj_id]['segmentation']
prompts_loader.add(ann_obj_id,0,seg)
else:
new_mask_list = search_new_obj(masks_from_prev, masks, other_masks,mask_ratio_thresh)
logger.info(f"number of new obj: {len(new_mask_list)}")
for id,mask in enumerate(masks_from_prev):
if mask.sum() == 0:
continue
prompts_loader.add(id,now_frame,mask[0])
for i in range(len(new_mask_list)):
new_mask = new_mask_list[i]['segmentation']
prompts_loader.add(sum_id+i,now_frame,new_mask)
logger.info(f"obj num: {prompts_loader.get_obj_num()}")
if now_frame==0 or len(new_mask_list)!=0:
video_segments = get_video_segments(prompts_loader,predictor,inference_state)
vis_frame_stride = args.detect_stride
max_area_no_mask = (0,-1)
for out_frame_idx in tqdm(range(0, len(frame_names), vis_frame_stride)):
if out_frame_idx < now_frame:
continue
out_mask_list = []
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask_list.append(out_mask)
no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
if now_frame == out_frame_idx:
mask_ratio_thresh = no_mask_ratio
logger.info(f"mask_ratio_thresh: {mask_ratio_thresh}")
if no_mask_ratio > mask_ratio_thresh + 0.01 and out_frame_idx > now_frame:
masks_from_prev = out_mask_list
max_area_no_mask = (no_mask_ratio, out_frame_idx)
logger.info(max_area_no_mask)
break
if max_area_no_mask[1] == -1:
break
logger.info("max_area_no_mask:", max_area_no_mask)
now_frame = max_area_no_mask[1]
###### Final output ######
save_dir = os.path.join(base_dir,level,"final-output")
os.makedirs(save_dir, exist_ok=True)
video_segments = get_video_segments(prompts_loader,predictor,inference_state,final_output=True)
for out_frame_idx in tqdm(range(0, len(frame_names), 1)):
out_mask_list = []
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask_list.append(out_mask)
no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
logger.info(no_mask_ratio)
save_masks(out_mask_list, out_frame_idx,save_dir)
save_masks_npy(out_mask_list, out_frame_idx,save_dir)
###### Generate Visualization Frames ######
logger.info("Start generating visualization frames...")
vis_save_dir = os.path.join(base_dir,level,'visualization','full-mask-npy')
os.makedirs(vis_save_dir,exist_ok=True)
frame_save_dir = os.path.join(base_dir,level,'visualization','frames')
os.makedirs(frame_save_dir, exist_ok=True)
# Read all npy files
npy_name_list = []
for name in os.listdir(save_dir):
if 'npy' in name:
npy_name_list.append(name)
npy_name_list.sort()
logger.info(f"Found {len(npy_name_list)} npy files")
npy_list = [np.load(os.path.join(save_dir,name)) for name in npy_name_list]
image_list = [Image.open(os.path.join(video_dir,name)) for name in frame_names]
assert len(npy_list) == len(image_list), "Number of npy files does not match number of images"
logger.info(f"Processing {len(npy_list)} frames in total")
# Generate random colors
def generate_random_colors(num_colors):
colors = []
for _ in range(num_colors):
reroll = True
iter_cnt = 0
while reroll and iter_cnt < 100:
iter_cnt += 1
reroll = False
color = tuple(random.randint(1, 255) for _ in range(3))
for selected_color in colors:
if np.linalg.norm(np.array(color) - np.array(selected_color)) < 70:
reroll = True
break
colors.append(color)
return colors
num_masks = max(len(masks) for masks in npy_list)
colors = generate_random_colors(num_masks)
post_colors = [(0, 0, 0)] + colors
post_colors = np.array(post_colors) # [num_masks, 3]
np.save(os.path.join(base_dir, "colors.npy"), post_colors)
# Only process first and last frames
# frames_to_process = [0, -1] # Indices for first and last frames
for frame_idx in range(len(frame_names)):
# for frame_idx in frames_to_process:
masks = npy_list[frame_idx]
image = image_list[frame_idx]
image_np = np.array(image)
mask_combined = np.zeros_like(image_np, dtype=np.uint8)
for mask_id, mask in enumerate(masks):
mask = mask.squeeze(0)
mask_area = mask > 0
mask_combined[mask_area, :] = colors[mask_id]
# Blend original image with colored mask
mask_combined = np.clip(mask_combined, 0, 255)
# blended_image = cv2.addWeighted(image_np, 0.7, mask_combined, 0.3, 0)
blended_image = mask_combined
# change the save path
frame_name = frame_names[frame_idx]
frame_save_dir = base_dir
output_path = os.path.join(frame_save_dir, frame_name)
Image.fromarray(blended_image).save(output_path)
logger.info(f"Frame saved to: {output_path}")