seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
import logging
import os
import shutil
import time
from abc import ABC, abstractmethod
from pathlib import Path
import numpy as np
import open3d as o3d
import torch
from dust3r.cloud_opt import GlobalAlignerMode, global_aligner
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.utils.device import to_numpy
from dust3r.utils.geometry import inv
from mast3r.model import AsymmetricMASt3R
from utils.sfm_utils import (compute_co_vis_masks, get_sorted_image_files,
load_images, save_extrinsic, save_intrinsics,
save_points3D)
from .utils import prepare_input, prepare_output, storePly
class BaseEstimator(ABC):
@abstractmethod
def get_poses():
pass
class ColmapEstimator(BaseEstimator):
def __init__(self, cfg):
self.cfg = cfg
def get_poses(self, camera_model="OPENCV", use_gpu=True):
save_path = self.cfg.pipeline.data_path
database_path = os.path.join(save_path, "distorted", "database.db")
raw_img_path = os.path.join(save_path, "input")
sparse_path = os.path.join(save_path, "distorted", "sparse")
os.makedirs(os.path.join(save_path, "distorted"), exist_ok=True)
os.makedirs(sparse_path, exist_ok=True)
feat_extraction_cmd = [
"colmap", "feature_extractor",
"--database_path", database_path,
"--image_path", raw_img_path,
"--ImageReader.single_camera", "1",
"--ImageReader.camera_model", camera_model,
"--SiftExtraction.use_gpu", str(int(use_gpu))
]
feat_extraction_cmd = " ".join(feat_extraction_cmd)
exit_code = os.system(feat_extraction_cmd)
if exit_code != 0:
logging.error(f"Feature extraction failed with code {exit_code}. Exiting.")
exit(exit_code)
feat_matching_cmd = [
"colmap", "exhaustive_matcher",
"--database_path", database_path,
"--SiftMatching.use_gpu", str(int(use_gpu))
]
feat_matching_cmd = " ".join(feat_matching_cmd)
exit_code = os.system(feat_matching_cmd)
if exit_code != 0:
logging.error(f"Feature matching failed with code {exit_code}. Exiting.")
exit(exit_code)
mapper_cmd = [
"colmap", "mapper",
"--database_path", database_path,
"--image_path", raw_img_path,
"--output_path", sparse_path,
"--Mapper.ba_global_function_tolerance=0.000001"
]
mapper_cmd = " ".join(mapper_cmd)
exit_code = os.system(mapper_cmd)
if exit_code != 0:
logging.error(f"Mapper failed with code {exit_code}. Exiting.")
exit(exit_code)
img_undist_cmd = [
"colmap", "image_undistorter",
"--image_path", raw_img_path,
"--input_path", os.path.join(sparse_path, "0"),
"--output_path", save_path,
"--output_type", "COLMAP"
]
img_undist_cmd = " ".join(img_undist_cmd)
exit_code = os.system(img_undist_cmd)
if exit_code != 0:
logging.error(f"Mapper failed with code {exit_code}. Exiting.")
exit(exit_code)
# move data:
curr_path = os.path.join(save_path, "sparse")
dest_path = os.path.join(curr_path, "0")
os.makedirs(dest_path, exist_ok=True)
files = list(filter(lambda x: x != "0", os.listdir(curr_path)))
for file in files:
src_file = os.path.join(curr_path, file)
dest_file = os.path.join(dest_path, file)
shutil.move(src_file, dest_file)
class MASt3REstimator(BaseEstimator):
def __init__(self, cfg):
self.cfg = cfg
self.device = cfg.pose_estimator.device
self.model = AsymmetricMASt3R.from_pretrained(cfg.pose_estimator.model_path).to(self.device)
def get_poses(self):
save_path = self.cfg.pipeline.data_path
co_vis_dsp = self.cfg.pose_estimator.co_vis_dsp
sparse_path = os.path.join(save_path, "sparse", "0")
os.makedirs(sparse_path, exist_ok=True)
image_dir = Path(save_path) / "input"
image_files, image_suffix = get_sorted_image_files(image_dir)
n_views = len(image_files)
images, org_imgs_shape = load_images(image_files, size=512)
logging.info(">> Making pairs...")
pairs = make_pairs(images)
logging.info(">> Inference...")
output = inference(pairs, self.model, self.device, batch_size=1, verbose=True)
logging.info(f'>> Global alignment...')
scene = global_aligner(output, device=self.device, mode=GlobalAlignerMode.PointCloudOptimizer)
extrinsics_w2c = inv(to_numpy(scene.get_im_poses()))
intrinsics = to_numpy(scene.get_intrinsics())
focals = to_numpy(scene.get_focals())
imgs = np.array(scene.imgs)
pts3d = to_numpy(scene.get_pts3d())
pts3d = np.array(pts3d)
depthmaps = to_numpy(scene.im_depthmaps.detach().cpu().numpy())
values = [param.detach().cpu().numpy() for param in scene.im_conf]
confs = np.array(values)
logging.info(f'>> Confiden-aware Ranking...')
avg_conf_scores = confs.mean(axis=(1, 2))
sorted_conf_indices = np.argsort(avg_conf_scores)[::-1]
sorted_conf_avg_conf_scores = avg_conf_scores[sorted_conf_indices]
logging.info("Sorted indices:", str(sorted_conf_indices))
logging.info("Sorted average confidence scores:", str(sorted_conf_avg_conf_scores))
logging.info(f'>> Calculate the co-visibility mask...')
depth_thre = self.cfg.pose_estimator.depth_thre
if depth_thre > 0:
overlapping_masks = compute_co_vis_masks(sorted_conf_indices, depthmaps, pts3d, intrinsics, extrinsics_w2c, imgs.shape, depth_threshold=depth_thre)
overlapping_masks = ~overlapping_masks
else:
co_vis_dsp = False
overlapping_masks = None
focals = np.repeat(focals[0], n_views)
logging.info(f'>> Saving results...')
save_extrinsic(Path(sparse_path), extrinsics_w2c, image_files, image_suffix)
save_intrinsics(Path(sparse_path), focals, org_imgs_shape, imgs.shape, save_focals=True)
pts_num = save_points3D(Path(sparse_path), imgs, pts3d, confs.reshape(pts3d.shape[0], -1), overlapping_masks, use_masks=co_vis_dsp, save_all_pts=True, save_txt_path=save_path, depth_threshold=depth_thre)
# save_images_and_masks(Path(sparse_path), n_views, imgs, overlapping_masks, image_files, image_suffix)
logging.info(f'MASt3R Reconstruction is successfully converted to COLMAP files in: {sparse_path}')
logging.info(f'Number of points: {pts3d.reshape(-1, 3).shape[0]}')
logging.info(f'Number of points after downsampling: {pts_num}')
class CUT3REstimator(BaseEstimator):
def __init__(self, cfg):
self.cfg = cfg
self.device = cfg.pose_estimator.device
def get_poses(self):
cfg = self.cfg
if self.device == "cuda" and not torch.cuda.is_available():
print("cuda not available. switching to cpu.")
self.device = "cpu"
from cut3r.dust3r.inference import inference
from cut3r.dust3r.model import ARCroco3DStereo
save_path = self.cfg.pipeline.data_path
img_folder_path = os.path.join(save_path, "input")
img_paths = [os.path.join(img_folder_path, img_name) for img_name in os.listdir(img_folder_path)]
img_mask = [True] * len(img_paths)
views, orig_shape = prepare_input(
img_paths=img_paths,
img_mask=img_mask,
size=512,
revisit=1,
update=True,
)
model = ARCroco3DStereo.from_pretrained(cfg.pose_estimator.model_path).to(self.device)
model.eval()
logging.info("Running inference...")
start_time = time.time()
outputs, state_args = inference(views, model, self.device)
total_time = time.time() - start_time
per_frame_time = total_time / len(views)
print(
f"Inference completed in {total_time:.2f} seconds (average {per_frame_time:.2f} s per frame)."
)
pts3ds_other, colors, conf, cam_dict = prepare_output(
outputs, orig_shape, save_path, 1, True
)
conf = torch.cat(conf, dim=0)
if self.cfg.pipeline.selection:
conf_score = conf.mean(dim=(1, 2))
chunk_num = self.cfg.pipeline.chunk_num
keep_num_per_chunk = self.cfg.pipeline.keep_num_per_chunk
conf_scores_tuple = conf_score.chunk(chunk_num)
selected_idxs = []
total_conf_len = 0
for conf_scores_chunk in conf_scores_tuple:
_, idxs = conf_scores_chunk.sort(descending=True)
idxs = idxs[:keep_num_per_chunk]
selected_idxs += [(idx + total_conf_len).item() for idx in idxs]
total_conf_len += len(conf_scores_chunk)
self.cfg.pipeline.selected_idxs = sorted(selected_idxs)
pts3ds_to_save = [pts3ds_other[idx].cpu().numpy() for idx in self.cfg.pipeline.selected_idxs]
colors_to_save = [colors[idx].cpu().numpy() for idx in self.cfg.pipeline.selected_idxs]
all_pts3ds = np.stack(pts3ds_to_save).reshape(-1, 3)
all_colors = np.stack(colors_to_save).reshape(-1, 3)
storePly(os.path.join(save_path, "points3D.ply"), all_pts3ds, all_colors)
class VGGTEstimator(BaseEstimator):
def __init__(self, cfg):
self.cfg = cfg
self.device = cfg.pose_estimator.device
def get_poses(self):
from vggt.models.vggt import VGGT
from vggt.utils.geometry import unproject_depth_map_to_point_map
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
cfg = self.cfg
if self.device == "cuda" and not torch.cuda.is_available():
print("cuda not available. switching to cpu.")
self.device = "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
logging.info("Loading vggt...")
model = VGGT.from_pretrained("facebook/VGGT-1B").to(self.device)
save_path = self.cfg.pipeline.data_path
img_folder_path = os.path.join(save_path, "input")
img_paths = [os.path.join(img_folder_path, img_name) for img_name in os.listdir(img_folder_path)]
images = load_and_preprocess_images(img_paths).to(self.device)
with torch.no_grad(), torch.amp.autocast("cuda", dtype=dtype):
images = images[None]
aggregated_tokens_list, ps_idx = model.aggregator(images)
pose_enc = model.camera_head(aggregated_tokens_list)[-1]
extrinsic, intrinsic = pose_encoding_to_extri_intri(pose_enc, images.shape[-2:])
depth_map, depth_conf = model.depth_head(aggregated_tokens_list, images, ps_idx)
point_map = unproject_depth_map_to_point_map(
depth_map.squeeze(0),
extrinsic.squeeze(0),
intrinsic.squeeze(0)
)
extrinsic, intrinsic = extrinsic.squeeze(), intrinsic.squeeze()
extrinsics_w2c = torch.eye(4)[None].repeat(len(extrinsic), 1, 1)
extrinsics_w2c[:, :3, :4] = extrinsic.cpu()
extrinsics_w2c = extrinsics_w2c.cpu().numpy()
intrinsics = intrinsic.cpu().numpy()
scaled_y, scaled_x = images.shape[-2:]
intrinsics[:, 0, 0] *= 720 / scaled_x
intrinsics[:, 1, 1] *= 480 / scaled_y
intrinsics[:, 0, 2] *= 720 / scaled_x
intrinsics[:, 1, 2] *= 480 / scaled_y
images = torch.stack([images[:, 0], images[:, -1]], dim=1)
point_map = np.stack([point_map[0], point_map[-1]], axis=0)
colors = images.permute(0, 1, 3, 4, 2).detach().cpu().numpy()
colors = colors.reshape(-1, 3)
point_map = point_map.reshape(-1, 3).astype(np.float32)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_map)
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(os.path.join(save_path, "points3D.ply"), pcd)
camera_dir = os.path.join(save_path, "camera")
os.makedirs(camera_dir, exist_ok=True)
for i, (w2c, intrinsic) in enumerate(zip(extrinsics_w2c, intrinsics)):
c2w = np.eye(4)
c2w[:3, :3] = w2c[:3, :3].T
c2w[:3, 3] = - w2c[:3, :3].T @ w2c[:3, 3]
np.savez(
os.path.join(camera_dir, f"{i+1:04d}.npz"),
pose=c2w,
intrinsics=intrinsic
)
def get_pose_estimator(cfg):
POSE_ESTIMATOR = {
"colmap": ColmapEstimator,
"mast3r": MASt3REstimator,
"cut3r": CUT3REstimator,
"vggt": VGGTEstimator,
}
return POSE_ESTIMATOR[cfg.pose_estimator.type](cfg)