Spaces:
Running
Running
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import json | |
import os | |
import random | |
import numpy as np | |
import torch | |
from field_construction.scene.dataset_readers import sceneLoadTypeCallbacks | |
from field_construction.scene.gaussian_model import GaussianModel | |
from field_construction.utils.camera_utils import (camera_to_JSON, | |
cameraList_from_camInfos) | |
from field_construction.utils.system_utils import searchForMaxIteration | |
class Scene: | |
gaussians: GaussianModel | |
def __init__(self, args, gaussians: GaussianModel, load_iteration=None, shuffle=True, | |
resolution_scales=[1.0]): | |
"""b | |
:param path: Path to colmap scene main folder. | |
""" | |
self.model_path = args.model_path | |
os.makedirs(self.model_path, exist_ok=True) | |
self.loaded_iter = None | |
self.gaussians = gaussians | |
self.source_path = args.source_path | |
if load_iteration: | |
if load_iteration == -1: | |
self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud")) | |
else: | |
self.loaded_iter = load_iteration | |
print("Loading trained model at iteration {}".format(self.loaded_iter)) | |
self.train_cameras = {} | |
self.test_cameras = {} | |
if os.path.exists(os.path.join(args.source_path, "sparse")): | |
scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, "images", args.eval, loaded_iter=self.loaded_iter) | |
elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")): | |
print("Found transforms_train.json file, assuming Blender data set!") | |
scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.eval) | |
else: | |
print("Assuming CUT3R data set...") | |
scene_info = sceneLoadTypeCallbacks["CUT3R"](args.source_path, args.white_background, args.eval, loaded_iter=self.loaded_iter) | |
if not self.loaded_iter: | |
with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply"), 'wb') as dest_file: | |
dest_file.write(src_file.read()) | |
json_cams = [] | |
camlist = [] | |
if scene_info.test_cameras: | |
camlist.extend(scene_info.test_cameras) | |
if scene_info.train_cameras: | |
camlist.extend(scene_info.train_cameras) | |
for id, cam in enumerate(camlist): | |
json_cams.append(camera_to_JSON(id, cam)) | |
with open(os.path.join(self.model_path, "cameras.json"), 'w') as file: | |
json.dump(json_cams, file) | |
if shuffle: | |
random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling | |
random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling | |
self.cameras_extent = scene_info.nerf_normalization["radius"] | |
print(f"cameras_extent {self.cameras_extent}") | |
self.multi_view_num = args.multi_view_num | |
for resolution_scale in resolution_scales: | |
print("Loading Training Cameras") | |
self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale, | |
args) | |
print("Loading Test Cameras") | |
self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale, | |
args) | |
print("computing nearest_id") | |
self.world_view_transforms = [] | |
camera_centers = [] | |
center_rays = [] | |
for id, cur_cam in enumerate(self.train_cameras[resolution_scale]): | |
self.world_view_transforms.append(cur_cam.world_view_transform) | |
camera_centers.append(cur_cam.camera_center) | |
R = torch.tensor(cur_cam.R).float().cuda() | |
T = torch.tensor(cur_cam.T).float().cuda() | |
center_ray = torch.tensor([0.0, 0.0, 1.0]).float().cuda() | |
center_ray = center_ray @ R.transpose(-1, -2) | |
center_rays.append(center_ray) | |
self.world_view_transforms = torch.stack(self.world_view_transforms) | |
camera_centers = torch.stack(camera_centers, dim=0) | |
center_rays = torch.stack(center_rays, dim=0) | |
center_rays = torch.nn.functional.normalize(center_rays, dim=-1) | |
diss = torch.norm(camera_centers[:, None] - camera_centers[None], dim=-1).detach().cpu().numpy() | |
tmp = torch.sum(center_rays[:, None] * center_rays[None], dim=-1) | |
angles = torch.arccos(tmp) * 180 / 3.14159 | |
angles = angles.detach().cpu().numpy() | |
with open(os.path.join(self.model_path, "multi_view.json"), 'w') as file: | |
for id, cur_cam in enumerate(self.train_cameras[resolution_scale]): | |
sorted_indices = np.lexsort((angles[id], diss[id])) | |
# sorted_indices = np.lexsort((diss[id], angles[id])) | |
mask = (angles[id][sorted_indices] < args.multi_view_max_angle) & \ | |
(diss[id][sorted_indices] > args.multi_view_min_dis) & \ | |
(diss[id][sorted_indices] < args.multi_view_max_dis) | |
sorted_indices = sorted_indices[mask] | |
multi_view_num = min(self.multi_view_num, len(sorted_indices)) | |
json_d = {'ref_name': cur_cam.image_name, 'nearest_name': []} | |
for index in sorted_indices[:multi_view_num]: | |
cur_cam.nearest_id.append(index) | |
cur_cam.nearest_names.append(self.train_cameras[resolution_scale][index].image_name) | |
json_d["nearest_name"].append(self.train_cameras[resolution_scale][index].image_name) | |
json_str = json.dumps(json_d, separators=(',', ':')) | |
file.write(json_str) | |
file.write('\n') | |
# print(f"frame {cur_cam.image_name}, neareast {cur_cam.nearest_names}, \ | |
# angle {angles[id][cur_cam.nearest_id]}, diss {diss[id][cur_cam.nearest_id]}") | |
if self.loaded_iter: | |
self.gaussians.load_ply(os.path.join(self.model_path, | |
"point_cloud", | |
"iteration_" + str(self.loaded_iter), | |
"point_cloud.ply")) | |
else: | |
self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent) | |
self.gaussians.init_RT_seq(self.train_cameras) | |
def save(self, iteration, mask=None, include_feature=False, finetune=False): | |
if include_feature: | |
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration)) | |
else: | |
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration)) | |
if finetune: | |
self.gaussians.save_ply(os.path.join(point_cloud_path, "finetune.ply"), mask, include_feature) | |
else: | |
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"), mask, include_feature) | |
def getTrainCameras(self, scale=1.0): | |
return self.train_cameras[scale] | |
def getTestCameras(self, scale=1.0): | |
return self.test_cameras[scale] | |