seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact [email protected]
*/
#include "forward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <stdio.h>
namespace cg = cooperative_groups;
// Forward method for converting the input spherical harmonics
// coefficients of each Gaussian to a simple RGB color.
__device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3 *means, glm::vec3 campos, const float *shs, bool *clamped)
{
// The implementation is loosely based on code for
// "Differentiable Point-Based Radiance Fields for
// Efficient View Synthesis" by Zhang et al. (2022)
glm::vec3 pos = means[idx];
glm::vec3 dir = pos - campos;
dir = dir / glm::length(dir);
glm::vec3 *sh = ((glm::vec3 *)shs) + idx * max_coeffs;
glm::vec3 result = SH_C0 * sh[0];
if (deg > 0)
{
float x = dir.x;
float y = dir.y;
float z = dir.z;
result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
result = result +
SH_C2[0] * xy * sh[4] +
SH_C2[1] * yz * sh[5] +
SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] +
SH_C2[3] * xz * sh[7] +
SH_C2[4] * (xx - yy) * sh[8];
if (deg > 2)
{
result = result +
SH_C3[0] * y * (3.0f * xx - yy) * sh[9] +
SH_C3[1] * xy * z * sh[10] +
SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] +
SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] +
SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] +
SH_C3[5] * z * (xx - yy) * sh[14] +
SH_C3[6] * x * (xx - 3.0f * yy) * sh[15];
}
}
}
result += 0.5f;
// RGB colors are clamped to positive values. If values are
// clamped, we need to keep track of this for the backward pass.
clamped[3 * idx + 0] = (result.x < 0);
clamped[3 * idx + 1] = (result.y < 0);
clamped[3 * idx + 2] = (result.z < 0);
return glm::max(result, 0.0f);
}
// Forward version of 2D covariance matrix computation
__device__ float3 computeCov2D(const float3 &mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float *cov3D, const float *viewmatrix)
{
// The following models the steps outlined by equations 29
// and 31 in "EWA Splatting" (Zwicker et al., 2002).
// Additionally considers aspect / scaling of viewport.
// Transposes used to account for row-/column-major conventions.
float3 t = transformPoint4x3(mean, viewmatrix);
const float limx = 1.3f * tan_fovx;
const float limy = 1.3f * tan_fovy;
const float txtz = t.x / t.z;
const float tytz = t.y / t.z;
t.x = min(limx, max(-limx, txtz)) * t.z;
t.y = min(limy, max(-limy, tytz)) * t.z;
glm::mat3 J = glm::mat3(
focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z),
0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z),
0, 0, 0);
glm::mat3 W = glm::mat3(
viewmatrix[0], viewmatrix[4], viewmatrix[8],
viewmatrix[1], viewmatrix[5], viewmatrix[9],
viewmatrix[2], viewmatrix[6], viewmatrix[10]);
glm::mat3 T = W * J;
glm::mat3 Vrk = glm::mat3(
cov3D[0], cov3D[1], cov3D[2],
cov3D[1], cov3D[3], cov3D[4],
cov3D[2], cov3D[4], cov3D[5]);
glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T;
// Apply low-pass filter: every Gaussian should be at least
// one pixel wide/high. Discard 3rd row and column.
cov[0][0] += 0.3f;
cov[1][1] += 0.3f;
return {float(cov[0][0]), float(cov[0][1]), float(cov[1][1])};
}
// Forward method for converting scale and rotation properties of each
// Gaussian to a 3D covariance matrix in world space. Also takes care
// of quaternion normalization.
__device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float *cov3D)
{
// Create scaling matrix
glm::mat3 S = glm::mat3(1.0f);
S[0][0] = mod * scale.x;
S[1][1] = mod * scale.y;
S[2][2] = mod * scale.z;
// Normalize quaternion to get valid rotation
glm::vec4 q = rot; // / glm::length(rot);
float r = q.x;
float x = q.y;
float y = q.z;
float z = q.w;
// Compute rotation matrix from quaternion
glm::mat3 R = glm::mat3(
1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y));
glm::mat3 M = S * R;
// Compute 3D world covariance matrix Sigma
glm::mat3 Sigma = glm::transpose(M) * M;
// Covariance is symmetric, only store upper right
cov3D[0] = Sigma[0][0];
cov3D[1] = Sigma[0][1];
cov3D[2] = Sigma[0][2];
cov3D[3] = Sigma[1][1];
cov3D[4] = Sigma[1][2];
cov3D[5] = Sigma[2][2];
}
// Perform initial steps for each Gaussian prior to rasterization.
template <int C>
__global__ void preprocessCUDA(int P, int D, int M,
const float *orig_points,
const glm::vec3 *scales,
const float scale_modifier,
const glm::vec4 *rotations,
const float *opacities,
const float *shs,
bool *clamped,
const float *cov3D_precomp,
const float *colors_precomp,
const float *viewmatrix,
const float *projmatrix,
const glm::vec3 *cam_pos,
const int W, int H,
const float tan_fovx, float tan_fovy,
const float focal_x, float focal_y,
int *radii,
float2 *points_xy_image,
float *depths,
float *cov3Ds,
float *rgb,
float4 *conic_opacity,
const dim3 grid,
uint32_t *tiles_touched,
bool prefiltered)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
// Initialize radius and touched tiles to 0. If this isn't changed,
// this Gaussian will not be processed further.
radii[idx] = 0;
tiles_touched[idx] = 0;
// Perform near culling, quit if outside.
float3 p_view;
if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view))
return;
// Transform point by projecting
float3 p_orig = {orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2]};
float4 p_hom = transformPoint4x4(p_orig, projmatrix);
float p_w = 1.0f / (p_hom.w + 0.0000001f);
float3 p_proj = {p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w};
// If 3D covariance matrix is precomputed, use it, otherwise compute
// from scaling and rotation parameters.
const float *cov3D;
if (cov3D_precomp != nullptr)
{
cov3D = cov3D_precomp + idx * 6;
}
else
{
computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6);
cov3D = cov3Ds + idx * 6;
}
// Compute 2D screen-space covariance matrix
float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix);
// Invert covariance (EWA algorithm)
float det = (cov.x * cov.z - cov.y * cov.y);
if (det == 0.0f)
return;
float det_inv = 1.f / det;
float3 conic = {cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv};
// Compute extent in screen space (by finding eigenvalues of
// 2D covariance matrix). Use extent to compute a bounding rectangle
// of screen-space tiles that this Gaussian overlaps with. Quit if
// rectangle covers 0 tiles.
float mid = 0.5f * (cov.x + cov.z);
float lambda1 = mid + sqrt(max(0.1f, mid * mid - det));
float lambda2 = mid - sqrt(max(0.1f, mid * mid - det));
float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2)));
float2 point_image = {ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H)};
uint2 rect_min, rect_max;
getRect(point_image, my_radius, rect_min, rect_max, grid);
if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0)
return;
// If colors have been precomputed, use them, otherwise convert
// spherical harmonics coefficients to RGB color.
if (colors_precomp == nullptr)
{
glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3 *)orig_points, *cam_pos, shs, clamped);
rgb[idx * C + 0] = result.x;
rgb[idx * C + 1] = result.y;
rgb[idx * C + 2] = result.z;
}
// if (opacities[idx] > 0.9 && point_image.x > 0 && point_image.x < 1264 && point_image.y > 0 && point_image.y < 832) {
// glm::vec4 q = rotations[idx];
// glm::vec3 cp = *cam_pos;
// printf("q(wxyz) %lf %lf %lf %lf, scale %lf %lf %lf, mean3d %lf %lf %lf, c %lf %lf %lf\n viewmatrix %lf %lf %lf %lf, %lf %lf %lf %lf, %lf %lf %lf %lf, %lf %lf %lf %lf\n",
// q.x, q.y, q.z, q.w, scales[idx].x, scales[idx].y, scales[idx].z,
// p_orig.x, p_orig.y, p_orig.z, cp.x, cp.y, cp.z,
// viewmatrix[0],viewmatrix[4],viewmatrix[8],viewmatrix[12],
// viewmatrix[1],viewmatrix[5],viewmatrix[9],viewmatrix[13],
// viewmatrix[2],viewmatrix[6],viewmatrix[10],viewmatrix[14],
// viewmatrix[3],viewmatrix[7],viewmatrix[11],viewmatrix[15]);
// }
// Store some useful helper data for the next steps.
depths[idx] = p_view.z;
radii[idx] = my_radius;
points_xy_image[idx] = point_image;
// Inverse 2D covariance and opacity neatly pack into one float4
conic_opacity[idx] = {conic.x, conic.y, conic.z, opacities[idx]};
tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x);
}
// Main rasterization method. Collaboratively works on one tile per
// block, each thread treats one pixel. Alternates between fetching
// and rasterizing data.
template <uint32_t CHANNELS, uint32_t CHANNELS_language_feature, uint32_t CHANNELS_instance_feature, uint32_t ALL_MAP>
__global__ void __launch_bounds__(BLOCK_X *BLOCK_Y)
renderCUDA(
const uint2 *__restrict__ ranges,
const uint32_t *__restrict__ point_list,
int W, int H,
const float focal_x, const float focal_y,
const float cx, const float cy,
const float *__restrict__ viewmatrix,
const float *__restrict__ cam_pos,
const float2 *__restrict__ points_xy_image,
const float *__restrict__ features,
const float *__restrict__ language_feature,
const float *__restrict__ language_feature_instance,
const float *__restrict__ all_map,
const float4 *__restrict__ conic_opacity,
float *__restrict__ final_T,
uint32_t *__restrict__ n_contrib,
const float *__restrict__ bg_color,
float *__restrict__ out_color,
float *__restrict__ out_language_feature,
float *__restrict__ out_language_feature_instance,
int *__restrict__ out_observe,
float *__restrict__ out_all_map,
float *__restrict__ out_plane_depth,
const bool render_geo,
bool include_feature)
{
// Identify current tile and associated min/max pixel range.
auto block = cg::this_thread_block();
const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
const uint2 pix_min = {block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y};
const uint2 pix_max = {min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y, H)};
const uint2 pix = {pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y};
const uint32_t pix_id = W * pix.y + pix.x;
const float2 pixf = {(float)pix.x, (float)pix.y};
const float2 ray = {(pixf.x - cx) / focal_x, (pixf.y - cy) / focal_y};
// Check if this thread is associated with a valid pixel or outside.
bool inside = pix.x < W && pix.y < H;
// Done threads can help with fetching, but don't rasterize
bool done = !inside;
// Load start/end range of IDs to process in bit sorted list.
uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
int toDo = range.y - range.x;
// Allocate storage for batches of collectively fetched data.
__shared__ int collected_id[BLOCK_SIZE];
__shared__ float2 collected_xy[BLOCK_SIZE];
__shared__ float4 collected_conic_opacity[BLOCK_SIZE];
// Initialize helper variables
float T = 1.0f;
uint32_t contributor = 0;
uint32_t last_contributor = 0;
float C[CHANNELS] = {0};
float F[CHANNELS_language_feature] = {0};
float F_ins[CHANNELS_instance_feature] = {0};
float All_map[ALL_MAP] = {0};
// Iterate over batches until all done or range is complete
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
{
// End if entire block votes that it is done rasterizing
int num_done = __syncthreads_count(done);
if (num_done == BLOCK_SIZE)
break;
// Collectively fetch per-Gaussian data from global to shared
int progress = i * BLOCK_SIZE + block.thread_rank();
if (range.x + progress < range.y)
{
int coll_id = point_list[range.x + progress];
collected_id[block.thread_rank()] = coll_id;
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
}
block.sync();
// Iterate over current batch
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
{
// Keep track of current position in range
contributor++;
// Resample using conic matrix (cf. "Surface
// Splatting" by Zwicker et al., 2001)
float2 xy = collected_xy[j];
float2 d = {xy.x - pixf.x, xy.y - pixf.y};
float4 con_o = collected_conic_opacity[j];
float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
if (power > 0.0f)
continue;
// Eq. (2) from 3D Gaussian splatting paper.
// Obtain alpha by multiplying with Gaussian opacity
// and its exponential falloff from mean.
// Avoid numerical instabilities (see paper appendix).
float alpha = min(0.99f, con_o.w * exp(power));
if (alpha < 1.0f / 255.0f)
continue;
float test_T = T * (1 - alpha);
if (test_T < 0.0001f)
{
done = true;
continue;
}
// Eq. (3) from 3D Gaussian splatting paper.
for (int ch = 0; ch < CHANNELS; ch++)
C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T;
if (include_feature)
{
for (int ch = 0; ch < CHANNELS_language_feature; ch++)
F[ch] += language_feature[collected_id[j] * CHANNELS_language_feature + ch] * alpha * T;
for (int ch = 0; ch < CHANNELS_instance_feature; ch++)
F_ins[ch] += language_feature_instance[collected_id[j] * CHANNELS_instance_feature + ch] * alpha * T;
}
if (render_geo)
{
for (int ch = 0; ch < ALL_MAP; ch++)
All_map[ch] += all_map[collected_id[j] * ALL_MAP + ch] * alpha * T;
}
if (T > 0.5)
{
atomicAdd(&(out_observe[collected_id[j]]), 1);
}
T = test_T;
// Keep track of last range entry to update this
// pixel.
last_contributor = contributor;
}
}
// All threads that treat valid pixel write out their final
// rendering data to the frame and auxiliary buffers.
if (inside)
{
final_T[pix_id] = T;
n_contrib[pix_id] = last_contributor;
for (int ch = 0; ch < CHANNELS; ch++)
out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch];
if (include_feature)
{
for (int ch = 0; ch < CHANNELS_language_feature; ch++)
out_language_feature[ch * H * W + pix_id] = F[ch]; // bg_color ???
for (int ch = 0; ch < CHANNELS_instance_feature; ch++)
out_language_feature_instance[ch * H * W + pix_id] = F_ins[ch];
}
if (render_geo)
{
for (int ch = 0; ch < ALL_MAP; ch++)
out_all_map[ch * H * W + pix_id] = All_map[ch];
out_plane_depth[pix_id] = All_map[4] / -(All_map[0] * ray.x + All_map[1] * ray.y + All_map[2] + 1.0e-8);
}
}
}
void FORWARD::render(
const dim3 grid, dim3 block,
const uint2 *ranges,
const uint32_t *point_list,
int W, int H,
const float focal_x, const float focal_y,
const float cx, const float cy,
const float *viewmatrix,
const float *cam_pos,
const float2 *means2D,
const float *colors,
const float *language_feature,
const float *language_feature_instance,
const float *all_map,
const float4 *conic_opacity,
float *final_T,
uint32_t *n_contrib,
const float *bg_color,
float *out_color,
float *out_language_feature,
float *out_language_feature_instance,
int *out_observe,
float *out_all_map,
float *out_plane_depth,
const bool render_geo,
bool include_feature)
{
renderCUDA<NUM_CHANNELS, NUM_CHANNELS_language_feature, NUM_CHANNELS_instance_feature, NUM_ALL_MAP><<<grid, block>>>(
ranges,
point_list,
W, H,
focal_x, focal_y,
cx, cy,
viewmatrix,
cam_pos,
means2D,
colors,
language_feature,
language_feature_instance,
all_map,
conic_opacity,
final_T,
n_contrib,
bg_color,
out_color,
out_language_feature,
out_language_feature_instance,
out_observe,
out_all_map,
out_plane_depth,
render_geo,
include_feature);
}
void FORWARD::preprocess(int P, int D, int M,
const float *means3D,
const glm::vec3 *scales,
const float scale_modifier,
const glm::vec4 *rotations,
const float *opacities,
const float *shs,
bool *clamped,
const float *cov3D_precomp,
const float *colors_precomp,
const float *viewmatrix,
const float *projmatrix,
const glm::vec3 *cam_pos,
const int W, int H,
const float focal_x, float focal_y,
const float tan_fovx, float tan_fovy,
int *radii,
float2 *means2D,
float *depths,
float *cov3Ds,
float *rgb,
float4 *conic_opacity,
const dim3 grid,
uint32_t *tiles_touched,
bool prefiltered)
{
preprocessCUDA<NUM_CHANNELS><<<(P + 255) / 256, 256>>>(
P, D, M,
means3D,
scales,
scale_modifier,
rotations,
opacities,
shs,
clamped,
cov3D_precomp,
colors_precomp,
viewmatrix,
projmatrix,
cam_pos,
W, H,
tan_fovx, tan_fovy,
focal_x, focal_y,
radii,
means2D,
depths,
cov3Ds,
rgb,
conic_opacity,
grid,
tiles_touched,
prefiltered);
}