seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import sys
import numpy as np
from field_construction.scene.cameras import Camera
from field_construction.utils.graphics_utils import fov2focal
WARNED = False
def loadCam(args, id, cam_info, resolution_scale):
orig_w, orig_h = cam_info.width, cam_info.height
if args.resolution in [1, 2, 4, 8]:
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
else: # should be a type that converts to float
if args.resolution == -1:
if orig_h > 1080:
global WARNED
if not WARNED:
print("[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.\n "
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
WARNED = True
global_down = orig_h / 1080
else:
global_down = 1
else:
global_down = orig_w / args.resolution
scale = float(global_down) * float(resolution_scale)
resolution = (int(orig_w / scale), int(orig_h / scale))
sys.stdout.write('\r')
sys.stdout.write("load camera {}".format(id))
sys.stdout.write('\r')
sys.stdout.flush()
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
image_width=resolution[0], image_height=resolution[1],
image_path=cam_info.image_path,
image_name=cam_info.image_name, uid=cam_info.global_id,
preload_img=args.preload_img,
ncc_scale=args.ncc_scale,
data_device=args.data_device)
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
camera_list = []
for id, c in enumerate(cam_infos):
camera_list.append(loadCam(args, id, c, resolution_scale))
return camera_list
def camera_to_JSON(id, camera : Camera):
Rt = np.zeros((4, 4))
Rt[:3, :3] = camera.R.transpose()
Rt[:3, 3] = camera.T
Rt[3, 3] = 1.0
W2C = np.linalg.inv(Rt)
pos = W2C[:3, 3]
rot = W2C[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'id' : id,
'img_name' : camera.image_name,
'width' : camera.width,
'height' : camera.height,
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy' : fov2focal(camera.FovY, camera.height),
'fx' : fov2focal(camera.FovX, camera.width)
}
return camera_entry
def gen_virtul_cam(cam, trans_noise=1.0, deg_noise=15.0, device="cuda"):
Rt = np.zeros((4, 4))
Rt[:3, :3] = cam.R.transpose()
Rt[:3, 3] = cam.T
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
translation_perturbation = np.random.uniform(-trans_noise, trans_noise, 3)
rotation_perturbation = np.random.uniform(-deg_noise, deg_noise, 3)
rx, ry, rz = np.deg2rad(rotation_perturbation)
Rx = np.array([[1, 0, 0],
[0, np.cos(rx), -np.sin(rx)],
[0, np.sin(rx), np.cos(rx)]])
Ry = np.array([[np.cos(ry), 0, np.sin(ry)],
[0, 1, 0],
[-np.sin(ry), 0, np.cos(ry)]])
Rz = np.array([[np.cos(rz), -np.sin(rz), 0],
[np.sin(rz), np.cos(rz), 0],
[0, 0, 1]])
R_perturbation = Rz @ Ry @ Rx
C2W[:3, :3] = C2W[:3, :3] @ R_perturbation
C2W[:3, 3] = C2W[:3, 3] + translation_perturbation
Rt = np.linalg.inv(C2W)
virtul_cam = Camera(100000, Rt[:3, :3].transpose(), Rt[:3, 3], cam.FoVx, cam.FoVy,
cam.image_width, cam.image_height,
cam.image_path, cam.image_name, 100000,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0,
preload_img=False, data_device=device)
return virtul_cam