eawolf2357-git / models /global_local_memory_module.py
seawolf2357's picture
Upload folder using huggingface_hub
321d89c verified
raw
history blame
7.65 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttentionCA(nn.Module):
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
super().__init__()
self.scale = dim_head ** -0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape
q = self.to_q(latents)
k, v = self.to_kv(x).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out)
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
super().__init__()
self.scale = dim_head ** -0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_k = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim , bias=False)
self.to_v = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim , bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, gl_key,gl_value, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
gl_key=self.norm1(gl_key)
gl_value=self.norm1(gl_value)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape
q = self.to_q(latents)
k=self.to_k(gl_key)
v=self.to_v(gl_value)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
out = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
)
# attention
'''
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
'''
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out)
class global_local_memory(nn.Module):
"""
- perceiver resampler like arch (compared with previous MLP-like arch)
- we concat id embedding (generated by arcface) and query tokens as latents
- latents will attend each other and interact with vit features through cross-attention
- vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two IDFormer layers
"""
def __init__(
self,
dim=3072,
depth=3,
dim_head=96,
heads=32,
num_queries=32,
output_dim=3072,
ff_mult=4,
):
super().__init__()
self.dim = dim
self.num_queries = num_queries
assert depth % 3 == 0
scale = dim ** -0.5
self.proj_out = nn.Parameter( torch.zeros(dim, output_dim))
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
for i in range(3):
setattr(
self,
f'key_mapping_{i}',
nn.Sequential(
nn.Linear(512, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 2048),
nn.LayerNorm(2048),
nn.LeakyReLU(),
nn.Linear(2048, dim),
),
)
setattr(
self,
f'value_mapping_{i}',
nn.Sequential(
nn.Linear(512, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 2048),
nn.LayerNorm(2048),
nn.LeakyReLU(),
nn.Linear(2048, dim),
),
)
def forward(self, global_memory, local_memory,latents):
latents = latents.repeat(global_memory.size(0), 1,1)
global_local_memory_key=torch.cat((global_memory[:,0],local_memory[:,0]),dim=2) #torch.Size([5, 5110, 512])
global_local_memory_value=torch.cat((global_memory[:,1],local_memory[:,1]),dim=2) #torch.Size([5, 5110, 512])
for i in range(3):
global_local_key = getattr(self, f'key_mapping_{i}')(global_local_memory_key[:,i])
global_local_value = getattr(self, f'value_mapping_{i}')(global_local_memory_value[:,i])
attn,ff=self.layers[i]
latents = attn(global_local_key.repeat_interleave(latents.shape[0], dim=0), global_local_value.repeat_interleave(latents.shape[0], dim=0), latents) + latents
latents = ff(latents) + latents
latents = latents @ self.proj_out
return latents
if __name__=="__main__":
global_memory=torch.randn(1,2, 3, 3626, 512)
local_memory=torch.randn(1,2,3,1484,512)
latents=torch.randn(1,25344,3072)
glm=global_local_memory()
total_params = sum(p.numel() for p in glm.parameters())
print(total_params)
start_time=time.time()
latents=glm(global_memory,local_memory,latents)
end_time=time.time()
print(f"Elapsed time (process_time): {end_time-start_time} seconds")