eawolf2357-git / videoxl /split_patch.py
seawolf2357's picture
Upload folder using huggingface_hub
321d89c verified
raw
history blame
6.71 kB
import json
import os
from PIL import Image
import math
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
import torch
from tqdm import tqdm
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Determine which dimension (width or height) to fill
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
# Width will be filled completely
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
# Height will be filled completely
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# Convert grid_pinpoints from string to list
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
try:
patch_size = processor.size[0]
except Exception as e:
patch_size = processor.size["shortest_edge"]
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size["height"])
# FIXME: this seems to be a bug that it resizes instead of pad.
# but to keep it consistent with previous, i will keep it as it is
# TODO: uncomment below to ablate with the padding
if isinstance(processor.size, dict):
shortest_edge = processor.size["shortest_edge"]
else:
shortest_edge = min(processor.size)
image_original_resize = image.resize((shortest_edge, shortest_edge))
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
json_path="/share/junjie/shuyan/video_traindata/anno/nextqa.json"
with open(json_path, 'r') as file:
data = json.load(file)
result=[]
for i in tqdm(data):
# print(i)
if "video" in i:
result.append(i)
print(len(result))
output_file = "/share/junjie/shuyan/video_traindata/anno/nextqa_pure.json"
with open(output_file, 'w', encoding='utf-8') as f_out:
json.dump(result, f_out, indent=4, ensure_ascii=False)