Spaces:
Configuration error
Configuration error
# pytorch_diffusion + derived encoder decoder | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import rearrange | |
from .movq_enc_3d import CausalConv3d, Upsample3D, DownSample3D | |
def cast_tuple(t, length=1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def is_odd(n): | |
return not divisible_by(n, 2) | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
class SpatialNorm3D(nn.Module): | |
def __init__( | |
self, | |
f_channels, | |
zq_channels, | |
norm_layer=nn.GroupNorm, | |
freeze_norm_layer=False, | |
add_conv=False, | |
pad_mode="constant", | |
**norm_layer_params, | |
): | |
super().__init__() | |
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params) | |
if freeze_norm_layer: | |
for p in self.norm_layer.parameters: | |
p.requires_grad = False | |
self.add_conv = add_conv | |
if self.add_conv: | |
self.conv = CausalConv3d(zq_channels, zq_channels, kernel_size=3, pad_mode=pad_mode) | |
self.conv_y = CausalConv3d(zq_channels, f_channels, kernel_size=1, pad_mode=pad_mode) | |
self.conv_b = CausalConv3d(zq_channels, f_channels, kernel_size=1, pad_mode=pad_mode) | |
def forward(self, f, zq): | |
if zq.shape[2] > 1: | |
f_first, f_rest = f[:, :, :1], f[:, :, 1:] | |
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] | |
zq_first, zq_rest = zq[:, :, :1], zq[:, :, 1:] | |
zq_first = torch.nn.functional.interpolate(zq_first, size=f_first_size, mode="nearest") | |
zq_rest = torch.nn.functional.interpolate(zq_rest, size=f_rest_size, mode="nearest") | |
zq = torch.cat([zq_first, zq_rest], dim=2) | |
else: | |
zq = torch.nn.functional.interpolate(zq, size=f.shape[-3:], mode="nearest") | |
if self.add_conv: | |
zq = self.conv(zq) | |
norm_f = self.norm_layer(f) | |
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return new_f | |
def Normalize3D(in_channels, zq_ch, add_conv): | |
return SpatialNorm3D( | |
in_channels, | |
zq_ch, | |
norm_layer=nn.GroupNorm, | |
freeze_norm_layer=False, | |
add_conv=add_conv, | |
num_groups=32, | |
eps=1e-6, | |
affine=True, | |
) | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout, | |
temb_channels=512, | |
zq_ch=None, | |
add_conv=False, | |
pad_mode="constant", | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize3D(in_channels, zq_ch, add_conv=add_conv) | |
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = Normalize3D(out_channels, zq_ch, add_conv=add_conv) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
else: | |
self.nin_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x, temb, zq): | |
h = x | |
h = self.norm1(h, zq) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None, None] | |
h = self.norm2(h, zq) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class AttnBlock2D(nn.Module): | |
def __init__(self, in_channels, zq_ch=None, add_conv=False): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize3D(in_channels, zq_ch, add_conv=add_conv) | |
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x, zq): | |
h_ = x | |
h_ = self.norm(h_, zq) | |
t = h_.shape[2] | |
h_ = rearrange(h_, "b c t h w -> (b t) c h w") | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b, c, h * w) # b,c,hw | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
h_ = rearrange(h_, "(b t) c h w -> b c t h w", t=t) | |
return x + h_ | |
class MOVQDecoder3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
zq_ch=None, | |
add_conv=False, | |
pad_mode="first", | |
temporal_compress_times=4, | |
**ignorekwargs, | |
): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
# log2 of temporal_compress_times | |
self.temporal_compress_level = int(np.log2(temporal_compress_times)) | |
if zq_ch is None: | |
zq_ch = z_channels | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
self.conv_in = CausalConv3d(z_channels, block_in, kernel_size=3, pad_mode=pad_mode) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
self.mid.block_2 = ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock2D(block_in, zq_ch, add_conv=add_conv)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
if i_level < self.num_resolutions - self.temporal_compress_level: | |
up.upsample = Upsample3D(block_in, resamp_with_conv, compress_time=False) | |
else: | |
up.upsample = Upsample3D(block_in, resamp_with_conv, compress_time=True) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
self.norm_out = Normalize3D(block_in, zq_ch, add_conv=add_conv) | |
self.conv_out = CausalConv3d(block_in, out_ch, kernel_size=3, pad_mode=pad_mode) | |
def forward(self, z, use_cp=False): | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
t = z.shape[2] | |
# z to block_in | |
zq = z | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, zq) | |
# h = self.mid.attn_1(h, zq) | |
h = self.mid.block_2(h, temb, zq) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb, zq) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, zq) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h, zq) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.conv.weight | |
class NewDecoder3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
zq_ch=None, | |
add_conv=False, | |
pad_mode="first", | |
temporal_compress_times=4, | |
post_quant_conv=False, | |
**ignorekwargs, | |
): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
# log2 of temporal_compress_times | |
self.temporal_compress_level = int(np.log2(temporal_compress_times)) | |
if zq_ch is None: | |
zq_ch = z_channels | |
if post_quant_conv: | |
self.post_quant_conv = CausalConv3d(zq_ch, z_channels, kernel_size=3, pad_mode=pad_mode) | |
else: | |
self.post_quant_conv = None | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
# self.conv_in = torch.nn.Conv3d(z_channels, | |
# block_in, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv_in = CausalConv3d(z_channels, block_in, kernel_size=3, pad_mode=pad_mode) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
# remove attention block | |
# self.mid.attn_1 = AttnBlock2D(block_in, zq_ch, add_conv=add_conv) | |
self.mid.block_2 = ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv, | |
pad_mode=pad_mode, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock2D(block_in, zq_ch, add_conv=add_conv)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
if i_level < self.num_resolutions - self.temporal_compress_level: | |
up.upsample = Upsample3D(block_in, resamp_with_conv, compress_time=False) | |
else: | |
up.upsample = Upsample3D(block_in, resamp_with_conv, compress_time=True) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
self.norm_out = Normalize3D(block_in, zq_ch, add_conv=add_conv) | |
# self.conv_out = torch.nn.Conv3d(block_in, | |
# out_ch, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv_out = CausalConv3d(block_in, out_ch, kernel_size=3, pad_mode=pad_mode) | |
def forward(self, z): | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
t = z.shape[2] | |
# z to block_in | |
zq = z | |
if self.post_quant_conv is not None: | |
z = self.post_quant_conv(z) | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, zq) | |
# h = self.mid.attn_1(h, zq) | |
h = self.mid.block_2(h, temb, zq) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb, zq) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, zq) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h, zq) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.conv.weight | |