Spaces:
Configuration error
Configuration error
import math | |
import torch | |
import torch.distributed | |
import torch.nn as nn | |
from ..util import ( | |
get_context_parallel_group, | |
get_context_parallel_rank, | |
get_context_parallel_world_size, | |
) | |
_USE_CP = True | |
def cast_tuple(t, length=1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def is_odd(n): | |
return not divisible_by(n, 2) | |
def exists(v): | |
return v is not None | |
def pair(t): | |
return t if isinstance(t, tuple) else (t, t) | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def leaky_relu(p=0.1): | |
return nn.LeakyReLU(p) | |
def _split(input_, dim): | |
cp_world_size = get_context_parallel_world_size() | |
if cp_world_size == 1: | |
return input_ | |
cp_rank = get_context_parallel_rank() | |
# print('in _split, cp_rank:', cp_rank, 'input_size:', input_.shape) | |
inpu_first_frame_ = input_.transpose(0, dim)[:1].transpose(0, dim).contiguous() | |
input_ = input_.transpose(0, dim)[1:].transpose(0, dim).contiguous() | |
dim_size = input_.size()[dim] // cp_world_size | |
input_list = torch.split(input_, dim_size, dim=dim) | |
output = input_list[cp_rank] | |
if cp_rank == 0: | |
output = torch.cat([inpu_first_frame_, output], dim=dim) | |
output = output.contiguous() | |
# print('out _split, cp_rank:', cp_rank, 'output_size:', output.shape) | |
return output | |
def _gather(input_, dim): | |
cp_world_size = get_context_parallel_world_size() | |
# Bypass the function if context parallel is 1 | |
if cp_world_size == 1: | |
return input_ | |
group = get_context_parallel_group() | |
cp_rank = get_context_parallel_rank() | |
# print('in _gather, cp_rank:', cp_rank, 'input_size:', input_.shape) | |
input_first_frame_ = input_.transpose(0, dim)[:1].transpose(0, dim).contiguous() | |
if cp_rank == 0: | |
input_ = input_.transpose(0, dim)[1:].transpose(0, dim).contiguous() | |
tensor_list = [torch.empty_like(torch.cat([input_first_frame_, input_], dim=dim))] + [ | |
torch.empty_like(input_) for _ in range(cp_world_size - 1) | |
] | |
if cp_rank == 0: | |
input_ = torch.cat([input_first_frame_, input_], dim=dim) | |
tensor_list[cp_rank] = input_ | |
torch.distributed.all_gather(tensor_list, input_, group=group) | |
output = torch.cat(tensor_list, dim=dim).contiguous() | |
# print('out _gather, cp_rank:', cp_rank, 'output_size:', output.shape) | |
return output | |
def _conv_split(input_, dim, kernel_size): | |
cp_world_size = get_context_parallel_world_size() | |
# Bypass the function if context parallel is 1 | |
if cp_world_size == 1: | |
return input_ | |
# print('in _conv_split, cp_rank:', cp_rank, 'input_size:', input_.shape) | |
cp_rank = get_context_parallel_rank() | |
dim_size = (input_.size()[dim] - kernel_size) // cp_world_size | |
if cp_rank == 0: | |
output = input_.transpose(dim, 0)[: dim_size + kernel_size].transpose(dim, 0) | |
else: | |
output = input_.transpose(dim, 0)[cp_rank * dim_size + 1 : (cp_rank + 1) * dim_size + kernel_size].transpose( | |
dim, 0 | |
) | |
output = output.contiguous() | |
# print('out _conv_split, cp_rank:', cp_rank, 'input_size:', output.shape) | |
return output | |
def _conv_gather(input_, dim, kernel_size): | |
cp_world_size = get_context_parallel_world_size() | |
# Bypass the function if context parallel is 1 | |
if cp_world_size == 1: | |
return input_ | |
group = get_context_parallel_group() | |
cp_rank = get_context_parallel_rank() | |
# print('in _conv_gather, cp_rank:', cp_rank, 'input_size:', input_.shape) | |
input_first_kernel_ = input_.transpose(0, dim)[:kernel_size].transpose(0, dim).contiguous() | |
if cp_rank == 0: | |
input_ = input_.transpose(0, dim)[kernel_size:].transpose(0, dim).contiguous() | |
else: | |
input_ = input_.transpose(0, dim)[kernel_size - 1 :].transpose(0, dim).contiguous() | |
tensor_list = [torch.empty_like(torch.cat([input_first_kernel_, input_], dim=dim))] + [ | |
torch.empty_like(input_) for _ in range(cp_world_size - 1) | |
] | |
if cp_rank == 0: | |
input_ = torch.cat([input_first_kernel_, input_], dim=dim) | |
tensor_list[cp_rank] = input_ | |
torch.distributed.all_gather(tensor_list, input_, group=group) | |
# Note: torch.cat already creates a contiguous tensor. | |
output = torch.cat(tensor_list, dim=dim).contiguous() | |
# print('out _conv_gather, cp_rank:', cp_rank, 'input_size:', output.shape) | |
return output | |