Spaces:
Configuration error
Configuration error
from abc import abstractmethod | |
from typing import Any, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters, deterministic=False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self): | |
# x = self.mean + self.std * torch.randn(self.mean.shape).to( | |
# device=self.parameters.device | |
# ) | |
x = self.mean + self.std * torch.randn_like(self.mean) | |
return x | |
def kl(self, other=None): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, | |
dim=[1, 2, 3], | |
) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
dim=[1, 2, 3], | |
) | |
def nll(self, sample, dims=[1, 2, 3]): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum( | |
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims, | |
) | |
def mode(self): | |
return self.mean | |
class AbstractRegularizer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
raise NotImplementedError() | |
def get_trainable_parameters(self) -> Any: | |
raise NotImplementedError() | |
class IdentityRegularizer(AbstractRegularizer): | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
return z, dict() | |
def get_trainable_parameters(self) -> Any: | |
yield from () | |
def measure_perplexity(predicted_indices: torch.Tensor, num_centroids: int) -> Tuple[torch.Tensor, torch.Tensor]: | |
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
encodings = F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) | |
avg_probs = encodings.mean(0) | |
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
cluster_use = torch.sum(avg_probs > 0) | |
return perplexity, cluster_use | |
class DiagonalGaussianRegularizer(AbstractRegularizer): | |
def __init__(self, sample: bool = True): | |
super().__init__() | |
self.sample = sample | |
def get_trainable_parameters(self) -> Any: | |
yield from () | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
log = dict() | |
posterior = DiagonalGaussianDistribution(z) | |
if self.sample: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
kl_loss = posterior.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
log["kl_loss"] = kl_loss | |
return z, log | |