Spaces:
Configuration error
Configuration error
#import torch | |
import pandas as pd | |
import os | |
from tqdm import tqdm | |
from concurrent.futures import ThreadPoolExecutor | |
from datetime import datetime | |
from pathlib import PosixPath | |
try: | |
import decord | |
except ImportError: | |
raise ImportError( | |
"The `decord` package is required for loading the video dataset. Install with `pip install decord`" | |
) | |
decord.bridge.set_bridge("torch") | |
def from_time_2_second(time_str): | |
# 使用 strptime 解析时间字符串 | |
time_obj = datetime.strptime(time_str, '%H:%M:%S.%f') | |
# 计算总秒数 | |
total_seconds = time_obj.hour * 3600 + time_obj.minute * 60 + time_obj.second + time_obj.microsecond / 1e6 | |
#print(total_seconds) | |
return total_seconds | |
def calculate_frames(time_str, fps): | |
"""根据时间字符串和帧率计算帧数""" | |
total_seconds = from_time_2_second(time_str) | |
frames = int(total_seconds * fps ) | |
return frames | |
# 读取数据 | |
df = pd.read_parquet("/home/cn/Datasets/SakugaDataset/parquet/train_aesthetic/sakugadataset_train_aesthetic.parquet") | |
df = df[['identifier', 'scene_start_time', 'scene_end_time', 'fps', "text_description", "aesthetic_score", "dynamic_score"]] | |
df = df.dropna(subset=['scene_start_time', 'scene_end_time', 'fps', "text_description", "aesthetic_score", "dynamic_score"]) | |
# 计算start_frame | |
df['start_frame'] = df.apply(lambda row: calculate_frames(row['scene_start_time'], row['fps']), axis=1) | |
df['identifier_video'] = df['identifier'].apply(lambda x: int(x.split(':')[0])) | |
base_path = '/home/cn/Datasets/SakugaDataset/split/train_aesthetic_start_frame' | |
rows_to_delete = [] | |
print(df.shape) | |
def file_exists(file_path): | |
"""检查文件是否存在""" | |
return os.path.exists(file_path) | |
# 定义检查函数 | |
def check_row(index, row): | |
folder_path = os.path.join(base_path, str(row['identifier_video'])) | |
start_time=from_time_2_second(row['scene_start_time']) | |
end_time=from_time_2_second(row['scene_end_time']) | |
fps=row['fps'] | |
#计算总number的有可能有问题?再看一次,明天 | |
total_frame_num=(end_time-start_time)*fps | |
#读取video,然后判断这个文件的真实帧数 | |
#print(int(start_time*fps)) | |
if total_frame_num<89: | |
return index | |
if not os.path.exists(folder_path): | |
return index | |
if os.path.exists(folder_path) and os.path.isdir(folder_path): | |
if len(os.listdir(folder_path)) == 0: | |
return index | |
frames=row["start_frame"] | |
video_name=row["identifier"].split(':')[0] | |
#print(frames) | |
data_path_1=f'{video_name}-Scene-{frames}.mp4' | |
data_path_2=f'{video_name}-Scene-{frames+1}.mp4' | |
data_path_3=f'{video_name}-Scene-{frames-1}.mp4' | |
fd1=os.path.join(base_path,video_name,data_path_1) | |
fd2=os.path.join(base_path,video_name,data_path_2) | |
fd3=os.path.join(base_path,video_name,data_path_3) | |
#判断是不是直接有,如果有的话就直接保留,如果没有的话,就看看有没有加一或者减一,可以自己先在这边过滤一下 | |
if not (file_exists(fd1) or file_exists(fd2) or file_exists(fd3) ): | |
print(fd1) | |
return index | |
file_path=None | |
if os.path.exists(fd1): | |
file_path=fd1 | |
elif os.path.exists(fd2): | |
file_path=fd2 | |
elif os.path.exists(fd3): | |
file_path=fd3 | |
video_reader = decord.VideoReader(uri=PosixPath(file_path).as_posix()) | |
video_num_frames = len(video_reader) | |
if video_num_frames<89: | |
print("video_num_frames",video_num_frames) | |
return index | |
#添加一个新的判断,判断start_frames是否在数据集中的地址,如果不在,就也返回index | |
return None | |
# 设置进度条 | |
progress_dataset_bar = tqdm(total=df.shape[0], desc="Loading videos") | |
# 使用多线程执行检查 | |
with ThreadPoolExecutor(max_workers=16) as executor: | |
futures = [] | |
for index, row in df.iterrows(): | |
futures.append(executor.submit(check_row, index, row)) | |
# 收集结果 | |
for future in tqdm(futures, desc="Processing results"): | |
result = future.result() | |
if result is not None: | |
rows_to_delete.append(result) | |
progress_dataset_bar.update(1) | |
progress_dataset_bar.close() | |
# 删除满足条件的行 | |
df.drop(rows_to_delete, inplace=True) | |
df.reset_index(drop=True, inplace=True) | |
print(df.shape) | |
# 保存过滤后的数据 | |
output_parquet_path ="/home/cn/Datasets/SakugaDataset/parquet/fliter_89_aesthetic_precise.parquet" | |
df.to_parquet(output_parquet_path, index=False) | |
#1054702 *8 |