Spaces:
Configuration error
Configuration error
import argparse | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
import shortuuid | |
import numpy as np | |
from longva.constants import IMAGE_TOKEN_INDEX | |
from longva.longva.conversation import conv_templates | |
from longva.model.builder import load_pretrained_model | |
from longva.mm_utils import tokenizer_image_token, process_images,transform_input_id | |
from torch.utils.data import Dataset, DataLoader | |
from PIL import Image | |
import math | |
from longva.model.builder import load_pretrained_model | |
from longva.mm_utils import tokenizer_image_token, process_images | |
from longva.constants import IMAGE_TOKEN_INDEX | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
# Custom dataset class | |
class CustomDataset(Dataset): | |
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config): | |
self.questions = questions | |
self.image_folder = image_folder | |
self.tokenizer = tokenizer | |
self.image_processor = image_processor | |
self.model_config = model_config | |
def __getitem__(self, index): | |
line = self.questions[index] | |
image_file = line["image"] | |
qs = line["text"] | |
# qs = "<image>" + '\n' + qs | |
# conv = conv_templates[args.conv_mode].copy() | |
# conv.append_message(conv.roles[0], qs) | |
# conv.append_message(conv.roles[1], None) | |
# prompt = conv.get_prompt() | |
# prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nDescribe the image in details.<|im_end|>\n<|im_start|>assistant\n" | |
prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\n{qs}<|im_end|>\n<|im_start|>assistant\n" | |
if ".mp4" in image_file: | |
new_path=os.path.join(self.image_folder,image_file.replace(".mp4","")) | |
num_images =len(os.listdir(new_path)) | |
frames = [] | |
for n in range(1, num_images + 1): # 假设 num_images 是图片数量 | |
image_path = os.path.join(new_path, f"{n}.png") # 图片名称为1.png, 2.png, ... | |
with Image.open(image_path) as frame: | |
frame = np.array(frame) | |
frames.append(frame) | |
image_tensor = self.image_processor.preprocess(frames, return_tensors="pt")["pixel_values"] | |
size=[0] | |
flag=["video"] | |
else: | |
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB') | |
image_tensor = process_images([image], self.image_processor, self.model_config) | |
size=[image.size] | |
flag=["image"] | |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | |
return input_ids, image_tensor, size, flag | |
def __len__(self): | |
return len(self.questions) | |
# DataLoader | |
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4): | |
assert batch_size == 1, "batch_size must be 1" | |
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config) | |
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False) | |
return data_loader | |
def eval_model(args): | |
# Model | |
tokenizer, model, image_processor, _ = load_pretrained_model(args.model_path, None, "llava_qwen", device_map="cuda:0") | |
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.expanduser(args.answers_file) | |
os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
ans_file = open(answers_file, "w") | |
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config) | |
gen_kwargs = {"do_sample": False, "temperature": 0, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 128} | |
for (input_ids, image_tensor, size,flag), line in tqdm(zip(data_loader, questions), total=len(questions)): | |
model.memory.reset() | |
idx = line["question_id"] | |
cur_prompt = line["text"] | |
image_tensor=image_tensor.squeeze(0).to('cuda', dtype=torch.float16) | |
input_ids = input_ids.to(device='cuda', non_blocking=True) | |
if flag[0][0]=="image": | |
num_tokens=(image_tensor.shape[1]-1) *144 | |
with torch.inference_mode(): | |
output_ids = model.generate(input_ids, images=image_tensor, image_sizes=size, modalities=["image"],**gen_kwargs) | |
elif flag[0][0]=="video": | |
num_tokens=(image_tensor.shape[0]) *144 | |
with torch.inference_mode(): | |
output_ids = model.generate(input_ids, images=[image_tensor], modalities=["video"],**gen_kwargs) | |
transform_input_ids=transform_input_id(input_ids,num_tokens,model.config.vocab_size-1) | |
output_ids=output_ids[:,transform_input_ids.shape[1]:] | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
ans_id = shortuuid.uuid() | |
ans_file.write(json.dumps({"question_id": idx, | |
"prompt": cur_prompt, | |
"text": outputs, | |
"answer_id": ans_id, | |
"model_id": "long_qwen", | |
"metadata": {}}) + "\n") | |
# ans_file.flush() | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default=None) | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--model-type", type=str, default=None) | |
parser.add_argument("--image-folder", type=str, default=None) | |
parser.add_argument("--question-file", type=str, default=None) | |
parser.add_argument("--answers-file", type=str, default=None) | |
parser.add_argument("--conv-mode", type=str, default=None) | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--top_p", type=float, default=None) | |
parser.add_argument("--num_beams", type=int, default=1) | |
parser.add_argument("--max_new_tokens", type=int, default=128) | |
args = parser.parse_args() | |
eval_model(args) | |