Spaces:
Configuration error
Configuration error
# Copyright 2024 Hao Zhang | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union, Dict | |
import torch | |
import torch.nn as nn | |
import transformers | |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
# from ...constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from videoxl.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM | |
import inspect | |
import math | |
import warnings | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from .configuration_qwen2 import Qwen2Config | |
from .modeling_beacon import Memory | |
from videoxl.train.modeling_utils import optional_grad_ctx, compute_loss, BeaconModelOutput | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" | |
_CONFIG_FOR_DOC = "Qwen2Config" | |
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"Qwen/Qwen2-7B-beta", | |
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2 | |
] | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 | |
class Qwen2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Qwen2RMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
class Qwen2RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, q, k, position_ids): | |
seq_len = max(position_ids.max().item() + 1, k.shape[2]) | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) | |
# batch_size, 1, key_len, head_dim | |
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) | |
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) | |
q_cos = k_cos[..., -q.shape[2]:, :] | |
q_sin = k_sin[..., -q.shape[2]:, :] | |
q_embed = (q * q_cos) + (rotate_half(q) * q_sin) | |
k_embed = (k * k_cos) + (rotate_half(k) * k_sin) | |
return q_embed, k_embed | |
class Qwen2LinearScalingRotaryEmbedding(Qwen2RotaryEmbedding): | |
"""Qwen2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
t = t / self.scaling_factor | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
class Qwen2DynamicNTKScalingRotaryEmbedding(Qwen2RotaryEmbedding): | |
"""Qwen2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
class Qwen2YarnRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128): | |
super().__init__() | |
self.base = base | |
self.dim = dim | |
self.scaling_factor = scaling_factor | |
self.beta_slow = beta_slow | |
self.beta_fast = beta_fast | |
self.max_position_embeddings = max_position_embeddings | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype() | |
) | |
def _get_factor(self, device, dtype): | |
# the dimension whose index is smaller than fast_dim rotates more than beta_fast | |
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base)) | |
fast_dim = max(math.floor(fast_dim), 0) | |
# the dimension whose index is bigger than slow_dim rotates less than beta_slow | |
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base)) | |
slow_dim = min(math.ceil(slow_dim), self.dim - 1) | |
if fast_dim == slow_dim: | |
slow_dim += 0.001 | |
# NOTE: very important to use full precision here so that the factor is correct | |
dim_arange = torch.arange(0, self.dim // 2, device=device, dtype=torch.float32) | |
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim) | |
dim_factor = torch.clamp(dim_factor, 0, 1) | |
# align with the paper notation | |
return (1 - dim_factor) | |
def _get_temperature(self): | |
if self.scaling_factor <= 1: | |
return 1.0 | |
return 0.07 * math.log(self.scaling_factor) + 1.0 | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
dim_arange = torch.arange(0, self.dim, 2, device=device) / self.dim | |
# dim / 2 | |
freq = self.base ** dim_arange | |
theta = 1 / freq | |
interleave_theta = theta / self.scaling_factor | |
factor = self._get_factor(device, dtype) | |
yarn_theta = factor * theta + (1 - factor) * interleave_theta | |
self.register_buffer("inv_freq", yarn_theta, persistent=False) | |
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
# get attention temperature | |
temperature = self._get_temperature() | |
self.register_buffer("cos_cached", (emb.cos() * temperature).to(dtype), persistent=False) | |
self.register_buffer("sin_cached", (emb.sin() * temperature).to(dtype), persistent=False) | |
self.max_seq_len_cached = seq_len | |
def forward(self, q, k, position_ids): | |
seq_len = max(position_ids.max().item() + 1, k.shape[2]) | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self.scaling_factor = seq_len / self.max_position_embeddings | |
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) | |
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) | |
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) | |
q_cos = k_cos[..., -q.shape[2]:, :] | |
q_sin = k_sin[..., -q.shape[2]:, :] | |
q_embed = (q * q_cos) + (rotate_half(q) * q_sin) | |
k_embed = (k * k_cos) + (rotate_half(k) * k_sin) | |
return q_embed, k_embed | |
# Copied from transformers.models.mistral.modeling_mistral.Qwen2MLP with Qwen2->Qwen2 | |
class Qwen2MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
if "mlp" in config.beacon_param: | |
self.beacon_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.beacon_up_proj.weight.data.zero_() | |
self.beacon_up_proj._is_hf_initialized = True | |
self.beacon_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.beacon_down_proj.weight.data.zero_() | |
self.beacon_down_proj._is_hf_initialized = True | |
def _init_beacon_proj(self, missing_keys): | |
"""Initialize the beacon projection weight with that of the ordinal projection.""" | |
if "mlp" in self.config.beacon_param: | |
if is_deepspeed_zero3_enabled(): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero | |
# For Mistral, there are rows that are full of zeros | |
# For Mistral, there are values bigger than 1e29... | |
import deepspeed | |
params = [self.up_proj.weight, self.down_proj.weight, self.beacon_up_proj.weight, self.beacon_down_proj.weight] | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
if (self.beacon_up_proj.weight.sum(-1) == 0).any() or (self.beacon_up_proj.weight > 1e29).any(): | |
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data | |
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data | |
else: | |
if any("beacon_up_proj" in missing_key for missing_key in missing_keys): | |
# only copy the value in-place, without tieing the weight | |
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data | |
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data | |
def forward(self, x, beacon_size, beacon_indices): | |
if "mlp" in self.config.beacon_param: | |
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids | |
if beacon_size > 0: | |
cur_beacon_indices = beacon_indices[-x.shape[1]:] | |
ordinal_hidden_states = x[:, cur_beacon_indices == 0] | |
beacon_hidden_states = x[:, cur_beacon_indices == 1] | |
ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states)) | |
beacon_down_proj = self.beacon_down_proj(self.act_fn(self.gate_proj(beacon_hidden_states)) * self.beacon_up_proj(beacon_hidden_states)) | |
down_proj = beacon_down_proj.new_ones(x.shape) | |
down_proj[:, beacon_indices == 0] = ordinal_down_proj | |
down_proj[:, beacon_indices == 1] = beacon_down_proj | |
else: | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
else: | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
return down_proj | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class Qwen2Attention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.attention_dropout = config.attention_dropout | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self._init_rope() | |
# NOTE: add extra parameters for beacon tokens | |
# skip post initialization to speed up loading | |
if "q" in config.beacon_param: | |
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None) | |
# NOTE: initialize the beacon parameters as zero | |
self.beacon_q_proj.weight.data.zero_() | |
self.beacon_q_proj._is_hf_initialized = True | |
if "k" in config.beacon_param: | |
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None) | |
self.beacon_k_proj.weight.data.zero_() | |
self.beacon_k_proj._is_hf_initialized = True | |
if "v" in config.beacon_param: | |
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None) | |
self.beacon_v_proj.weight.data.zero_() | |
self.beacon_v_proj._is_hf_initialized = True | |
if "o" in config.beacon_param: | |
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None) | |
self.beacon_o_proj.weight.data.zero_() | |
self.beacon_o_proj._is_hf_initialized = True | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
self.rotary_emb = Qwen2RotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
scaling_factor = self.config.rope_scaling["factor"] | |
if scaling_type == "linear": | |
self.rotary_emb = Qwen2LinearScalingRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "dynamic": | |
self.rotary_emb = Qwen2DynamicNTKScalingRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "yarn": | |
self.rotary_emb = Qwen2YarnRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "yarn-t": | |
self.rotary_emb = Qwen2YarnDynamicTemperatureRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "yarn-t-logn": | |
self.rotary_emb = Qwen2YarnDynamicTemperatureLogNRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def _init_beacon_proj(self, missing_keys): | |
"""Initialize the beacon projection weight with that of the ordinal projection.""" | |
beacon_param = self.config.beacon_param | |
if is_deepspeed_zero3_enabled(): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero | |
# For Mistral, there are rows that are full of zeros | |
# For Mistral, there are values bigger than 1e29... | |
import deepspeed | |
if "q" in beacon_param: | |
params = [self.beacon_q_proj.weight, self.q_proj.weight] | |
if self.q_proj.bias is not None: | |
params.extend([self.beacon_q_proj.bias, self.q_proj.bias]) | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros | |
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any(): | |
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data | |
if self.q_proj.bias is not None: | |
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data | |
if "k" in beacon_param: | |
params = [self.beacon_k_proj.weight, self.k_proj.weight] | |
if self.k_proj.bias is not None: | |
params.extend([self.beacon_k_proj.bias, self.k_proj.bias]) | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros | |
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any(): | |
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data | |
if self.k_proj.bias is not None: | |
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data | |
if "v" in beacon_param: | |
params = [self.beacon_v_proj.weight, self.v_proj.weight] | |
if self.v_proj.bias is not None: | |
params.extend([self.beacon_v_proj.bias, self.v_proj.bias]) | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros | |
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any(): | |
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data | |
if self.v_proj.bias is not None: | |
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data | |
if "o" in beacon_param: | |
params = [self.beacon_o_proj.weight, self.o_proj.weight] | |
if self.o_proj.bias is not None: | |
params.extend([self.beacon_o_proj.bias, self.o_proj.bias]) | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros | |
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any(): | |
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data | |
if self.o_proj.bias is not None: | |
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data | |
else: | |
# only copy the value in-place, without tieing the weight | |
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys): | |
# FIXME: some beacon weights are not initialized as zero for mistral model, why? | |
# if (self.beacon_q_proj.weight == 0).all(): | |
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data | |
if self.q_proj.bias is not None: | |
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data | |
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys): | |
# if (self.beacon_k_proj.weight == 0).all(): | |
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data | |
if self.k_proj.bias is not None: | |
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data | |
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys): | |
# if (self.beacon_v_proj.weight == 0).all(): | |
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data | |
if self.v_proj.bias is not None: | |
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data | |
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys): | |
# if (self.beacon_o_proj.weight == 0).all(): | |
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data | |
if self.o_proj.bias is not None: | |
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices): | |
if beacon_size > 0: | |
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids | |
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] | |
ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0] | |
beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1] | |
if "q" in self.config.beacon_param: | |
ordinal_query_states = self.q_proj(ordinal_hidden_states) | |
beacon_query_states = self.beacon_q_proj(beacon_hidden_states) | |
query_states = beacon_query_states.new_zeros((ordinal_query_states.shape[0], cur_beacon_indices.shape[0], ordinal_query_states.shape[2])) | |
query_states[:, cur_beacon_indices == 0] = ordinal_query_states | |
query_states[:, cur_beacon_indices == 1] = beacon_query_states | |
# NOTE: replicate hidden states for beacon tokens in case of parallel windows | |
if (cur_beacon_indices == 2).any(): | |
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, :(cur_beacon_indices == 2).sum()] | |
else: | |
query_states = self.q_proj(hidden_states) | |
if "k" in self.config.beacon_param: | |
ordinal_key_states = self.k_proj(ordinal_hidden_states) | |
beacon_key_states = self.beacon_k_proj(beacon_hidden_states) | |
key_states = beacon_key_states.new_zeros((ordinal_key_states.shape[0], cur_beacon_indices.shape[0], ordinal_key_states.shape[2])) | |
key_states[:, cur_beacon_indices == 0] = ordinal_key_states | |
key_states[:, cur_beacon_indices == 1] = beacon_key_states | |
# NOTE: replicate hidden states for beacon tokens in case of parallel windows | |
if (cur_beacon_indices == 2).any(): | |
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, :(cur_beacon_indices == 2).sum()] | |
else: | |
key_states = self.k_proj(hidden_states) | |
if "v" in self.config.beacon_param: | |
ordinal_value_states = self.v_proj(ordinal_hidden_states) | |
beacon_value_states = self.beacon_v_proj(beacon_hidden_states) | |
value_states = beacon_value_states.new_zeros((ordinal_value_states.shape[0], cur_beacon_indices.shape[0], ordinal_value_states.shape[2])) | |
value_states[:, cur_beacon_indices == 0] = ordinal_value_states | |
value_states[:, cur_beacon_indices == 1] = beacon_value_states | |
# NOTE: replicate hidden states for beacon tokens in case of parallel windows | |
if (cur_beacon_indices == 2).any(): | |
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, :(cur_beacon_indices == 2).sum()] | |
else: | |
value_states = self.v_proj(hidden_states) | |
else: | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
return query_states, key_states, value_states | |
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices): | |
if beacon_size > 0: | |
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids | |
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:] | |
if "o" in self.config.beacon_param: | |
ordinal_attn_output = self.o_proj(attn_output[:, cur_beacon_indices == 0]) | |
beacon_attn_output = self.beacon_o_proj(attn_output[:, cur_beacon_indices == 1]) | |
attn_output = beacon_attn_output.new_zeros(attn_output.shape) | |
attn_output[:, cur_beacon_indices == 0] = ordinal_attn_output | |
attn_output[:, cur_beacon_indices == 1] = beacon_attn_output | |
# NOTE: replicate hidden states for beacon tokens in case of parallel windows | |
# if (cur_beacon_indices == 2).any(): | |
# attn_output[:, cur_beacon_indices == 2] = beacon_attn_output[:, :(cur_beacon_indices == 2).sum()] | |
else: | |
attn_output = self.o_proj(attn_output) | |
else: | |
attn_output = self.o_proj(attn_output) | |
return attn_output | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
bsz, q_len, _ = hidden_states.size() | |
kv_seq_len = hidden_states.shape[-2] | |
past_key, past_value, beacon_size, beacon_indices = past_key_value | |
if past_key is not None: | |
past_seq_len = past_key.shape[2] | |
kv_seq_len += past_seq_len | |
else: | |
past_seq_len = 0 | |
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
# return keys and values before rope | |
# NOTE: incrementally return keys and values for efficiency | |
past_key_value = (key_states, value_states, beacon_size, beacon_indices) | |
if past_key is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key, key_states], dim=2) | |
value_states = torch.cat([past_value, value_states], dim=2) | |
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class Qwen2SdpaAttention(Qwen2Attention): | |
""" | |
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from Qwen2Attention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
kv_seq_len = hidden_states.shape[-2] | |
past_key, past_value, beacon_size, beacon_indices = past_key_value | |
if past_key is not None: | |
past_seq_len = past_key.shape[2] | |
kv_seq_len += past_seq_len | |
else: | |
past_seq_len = 0 | |
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
# return keys and values before rope | |
# NOTE: incrementally return keys and values for efficiency | |
past_key_value = (key_states, value_states, beacon_size, beacon_indices) | |
if past_key is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key, key_states], dim=2) | |
value_states = torch.cat([past_value, value_states], dim=2) | |
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask.to(query_states.dtype), | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal=self.is_causal and attention_mask is None and q_len > 1, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) | |
return attn_output, None, past_key_value | |
class Qwen2FlashAttention2(Qwen2Attention): | |
""" | |
Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
kv_seq_len = hidden_states.shape[-2] | |
past_key, past_value, beacon_size, beacon_indices = past_key_value | |
if past_key is not None: | |
past_seq_len = past_key.shape[2] | |
kv_seq_len += past_seq_len | |
else: | |
past_seq_len = 0 | |
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
# return keys and values before rope | |
# NOTE: incrementally return keys and values for efficiency | |
past_key_value = (key_states, value_states, beacon_size, beacon_indices) | |
if past_key is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key, key_states], dim=2) | |
value_states = torch.cat([past_value, value_states], dim=2) | |
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) | |
# FlashAttention will automatically handle grouped query attention | |
# key_states = repeat_kv(key_states, self.num_key_value_groups) | |
# value_states = repeat_kv(value_states, self.num_key_value_groups) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attention_dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (Qwen2RMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in Qwen2FlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
QWEN2_ATTENTION_CLASSES = { | |
"eager": Qwen2Attention, | |
"sdpa": Qwen2SdpaAttention, | |
"flash_attention_2": Qwen2FlashAttention2, | |
} | |
class Qwen2DecoderLayer(nn.Module): | |
def __init__(self, config: Qwen2Config, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": | |
logger.warning_once( | |
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
"unexpected results may be encountered." | |
) | |
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
self.mlp = Qwen2MLP(config) | |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. " | |
"Please make sure use `attention_mask` instead.`" | |
) | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
# NOTE: get beacon_size in case the mlp is included in beacon_param | |
past_key, past_value, beacon_size, beacon_indices = past_key_value | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
###add | |
# attention_mask = attention_mask.float() | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states, beacon_size, beacon_indices) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
QWEN2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Qwen2Config`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Qwen2PreTrainedModel(PreTrainedModel): | |
config_class = Qwen2Config | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Qwen2DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
QWEN2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Qwen2Model(Qwen2PreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] | |
Args: | |
config: Qwen2Config | |
""" | |
def __init__(self, config: Qwen2Config): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size #152064 | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
# BEACON: add beacon embedding | |
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) | |
self.beacon_embed_tokens._is_hf_initialized = True | |
self.layers = nn.ModuleList( | |
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.image_idx=0 | |
def _init_beacon_embed(self, missing_keys): | |
"""Initialize the beacon token embedding with that of the eos token.""" | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight] | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
# deepspeed will initialize the parameters to zero | |
if (self.beacon_embed_tokens.weight == 0).all(): | |
if self.config.beacon_embed_init == "bos": | |
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] | |
elif self.config.beacon_embed_init == "eos": | |
if isinstance(self.config.eos_token_id, list): | |
eos_token_id = self.config.eos_token_id[0] | |
else: | |
eos_token_id = self.config.eos_token_id | |
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] | |
else: | |
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") | |
else: | |
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys): | |
if self.config.beacon_embed_init == "bos": | |
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] | |
elif self.config.beacon_embed_init == "eos": | |
if isinstance(self.config.eos_token_id, list): | |
eos_token_id = self.config.eos_token_id[0] | |
else: | |
eos_token_id = self.config.eos_token_id | |
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] | |
else: | |
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
image_features:Optional[torch.Tensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
# BEACON: always use cache | |
use_cache = True | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
past_key, past_value, beacon_size, beacon_indices = past_key_values[0] | |
# BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients | |
if beacon_size > 0: | |
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids | |
# special_token = self.config.vocab_size -1 | |
# cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] | |
# ordinal_input_ids = input_ids[:, cur_beacon_indices == 0] # image indices | |
# beacon_input_ids = input_ids[:, cur_beacon_indices > 0] # beacon indices | |
# beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) | |
# # create a new embedding tensor | |
# inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1]) | |
# inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds | |
# # 计算 batch_size 和 seq_len | |
# batch_size, seq_len = input_ids.shape | |
# adjusted_image_idx=0 | |
# for batch_idx in range(batch_size): | |
# for seq_idx in range(seq_len): | |
# if input_ids[batch_idx, seq_idx] == special_token: | |
# # print("idx",self.image_idx+adjusted_image_idx) | |
# # print("11",image_features[self.image_idx+adjusted_image_idx].shape) | |
# # print("11",seq_idx,self.image_idx+adjusted_image_idx) | |
# inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx] | |
# adjusted_image_idx+=1 | |
# count = (input_ids == special_token).sum().item() | |
# self.image_idx += count | |
# if self.image_idx==image_features.shape[0]: | |
# self.image_idx=0 | |
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] | |
beacon_input_ids = input_ids[:, cur_beacon_indices > 0] | |
# print("input_ids",input_ids) | |
special_token = self.config.vocab_size -1 | |
inputs_embeds = torch.zeros(*input_ids.shape, image_features.shape[-1], device=input_ids.device, dtype=image_features.dtype) | |
batch_size, seq_len = input_ids.shape | |
adjusted_image_idx=0 | |
for batch_idx in range(batch_size): | |
for seq_idx in range(seq_len): | |
if input_ids[batch_idx, seq_idx] == special_token: | |
# print("idx",self.image_idx+adjusted_image_idx) | |
# print("11",image_features[self.image_idx+adjusted_image_idx].shape) | |
# print("11",seq_idx,self.image_idx+adjusted_image_idx) | |
# print("image",image_features[self.image_idx+adjusted_image_idx].shape) # 3584 | |
inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx] | |
adjusted_image_idx+=1 | |
count = (input_ids == special_token).sum().item() | |
self.image_idx += count | |
if self.image_idx==image_features.shape[0]: | |
self.image_idx=0 | |
# 对 beacon_input_ids 进行嵌入 | |
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) | |
# print("beacon",beacon_input_embeds.shape, adjusted_image_idx) | |
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds | |
else: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
hidden_states = inputs_embeds | |
# print("------------------------------------") | |
# print("inputs_embeds",inputs_embeds.shape) | |
# print(f"input_ids: {input_ids}") | |
# print(f"beacon_indices: {beacon_indices}") | |
# print(f"position_ids: {position_ids}") | |
# print(f"attention_mask:\n{attention_mask == 0}") | |
# print("------------------------------------") | |
# x = input() | |
# if x == "s": | |
# return | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
# BEACON: still use tuple to organize cache | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
# BEACON: slice out the past_key_value of the corresponding layer | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class LlavaQwenConfig(Qwen2Config): | |
model_type = "llava_qwen" | |
class LlavaQwenModel(LlavaMetaModel, Qwen2Model): | |
config_class = LlavaQwenConfig | |
def __init__(self, config: Qwen2Config): | |
super(LlavaQwenModel, self).__init__(config) | |
class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): | |
config_class = LlavaQwenConfig | |
def __init__(self, config): | |
# super(Qwen2ForCausalLM, self).__init__(config) | |
Qwen2ForCausalLM.__init__(self, config) | |
config.model_type = "llava_qwen" | |
config.rope_scaling = None | |
self.model = LlavaQwenModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.past_key_values=None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def get_model(self): | |
return self.model | |
def from_pretrained(cls, *args, **kwargs): | |
"""Override the default from_pretrained to extend vocab size according to beacon_size.""" | |
kwargs.update(output_loading_info=True) | |
model, loading_info = super().from_pretrained(*args, **kwargs) | |
# NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading | |
config = model.config | |
model.memory = Memory( | |
model_config=config, | |
k_seq_dim=2, | |
v_seq_dim=2, | |
) | |
missing_keys = loading_info["missing_keys"] | |
# NOTE: the beacon parameters may or may not be loaded from the checkpoint | |
# if it is loaded from the checkpoint, we should not re-initilize it | |
model.model._init_beacon_embed(missing_keys) | |
# initialize weights of possible q,k,v,o,mlp | |
for layer in model.model.layers: | |
layer.self_attn._init_beacon_proj(missing_keys) | |
layer.mlp._init_beacon_proj(missing_keys) | |
return model | |
def _native_forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
shift_labels: Optional[bool] = True, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
image_features: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, BeaconModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# when we directly call _native_forward, the past_key_values would be None | |
if past_key_values is None: | |
# NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward | |
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)] | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
image_features=image_features | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
batch_loss = None | |
valid_token_num = None | |
# print("labels",labels) | |
if labels is not None: | |
loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return BeaconModelOutput( | |
loss=loss, | |
batch_loss=batch_loss, | |
valid_token_num=valid_token_num, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def _beacon_forward(self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
beacon_skip_first: Optional[int] = None, | |
beacon_skip_last: Optional[int] = None, | |
image_features:Optional[torch.Tensor] = None | |
): | |
# t1 = time.time() | |
# initialize cache | |
# self.memory.prepare( | |
# input_ids=input_ids, | |
# attention_mask=attention_mask, | |
# labels=labels | |
# ) | |
self.memory.prepare( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
skip_first=beacon_skip_first, | |
skip_last=beacon_skip_last, | |
) | |
# t2 = time.time() | |
# after the first window, one token at a time | |
cnidx=0 | |
while not self.memory.finish: | |
cnidx=cnidx+1 | |
#print(cnidx) | |
# t3 = time.time() | |
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step() | |
# t4 = time.time() | |
# print("step_input",input_ids) | |
outputs = self._native_forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
# NOTE: the labels have been shifted so that all tokens in the window have the proper loss | |
shift_labels=False, | |
image_features=image_features | |
) | |
# t5 = time.time() | |
# update past_key_values | |
self.memory.update_memory(outputs.past_key_values) | |
# t6 = time.time() | |
if labels is not None: | |
# update loss | |
self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num) | |
# t7 = time.time() | |
# print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}") | |
# input() | |
# t8 = time.time() | |
#print(cnidx) | |
# output loss, past_key_values, and perplexity | |
self.past_key_values=past_key_values | |
#print(self.past_key_values[0][0].shape) | |
outputs = self.memory.output(outputs) | |
# t9 = time.time() | |
# print(f"output time: {t9-t8}") | |
# input() | |
# maybe we can return the final past key and value | |
return outputs | |
def clear_past_key_values(self): | |
self.past_key_values=None | |
def forward(self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
image_sizes: Optional[List[List[int]]] = None, | |
image_features: Optional[torch.FloatTensor] = None, | |
beacon_skip_first: Optional[int] = None, | |
beacon_skip_last: Optional[int] = None, | |
return_dict: Optional[bool] = None, | |
modalities: Optional[List[str]] = ["image"], | |
dpo_forward: Optional[bool] = False, | |
cache_position=None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if image_features is None: | |
if input_ids.shape[1] != 1: | |
image_features=self.get_image_features(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)[0] | |
# print("image_features",image_features.shape) | |
num_tokens=image_features.shape[0] | |
if -200 in input_ids: | |
start_value = -200 | |
if num_tokens !=0: | |
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() | |
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) | |
if labels !=None: | |
ignore_labels = torch.full((1, num_tokens), -100, device=labels.device, dtype=labels.dtype) | |
before_labels = labels[:, :insert_index] | |
after_labels = labels[:, insert_index + 1:] | |
labels = torch.cat((before_labels, ignore_labels, after_labels), dim=1) | |
before_input_ids = input_ids[:, :insert_index] | |
after_input_ids = input_ids[:, insert_index + 1:] | |
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
input_ids[input_ids < 0] = self.config.vocab_size-1 | |
# print("new_input_id",input_ids) | |
# print("new_labels",labels) | |
# count = (input_ids == 152063).sum().item() | |
# print("num_tokens",num_tokens,count) | |
if beacon_skip_first is None: | |
beacon_skip_first=14 | |
beacon_skip_last=beacon_skip_first + num_tokens | |
with optional_grad_ctx(with_grad=self.training): | |
# we can disable beacon to use the original mistral | |
if hasattr(self, "_enable_beacon") and self._enable_beacon == False: | |
return self._native_forward(input_ids, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
use_cache, | |
output_attentions, | |
output_hidden_states, | |
return_dict) | |
else: | |
return self._beacon_forward(input_ids, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
use_cache, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
beacon_skip_first, | |
beacon_skip_last, | |
image_features) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
image_sizes: Optional[torch.Tensor] = None, | |
modalities: Optional[List[str]] = ["image"], | |
beacon_skip_first: Optional[int] = None, | |
beacon_skip_last: Optional[int] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None: | |
image_features=self.get_image_features(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes) | |
image_features=torch.stack(image_features).squeeze(0) | |
kwargs["image_features"] = image_features | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
# return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) | |
# print("generate_id",inputs,image_features.shape) | |
num_tokens=image_features.shape[0] | |
if beacon_skip_first is None or beacon_skip_last is None: | |
beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item() | |
beacon_skip_last = beacon_skip_first + num_tokens | |
if -200 in inputs: | |
start_value = -200 | |
input_ids=inputs | |
if num_tokens !=0: | |
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() | |
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) | |
before_input_ids = input_ids[:, :insert_index] | |
after_input_ids = input_ids[:, insert_index + 1:] | |
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
input_ids[input_ids < 0] = self.config.vocab_size-1 | |
inputs=input_ids | |
# print("new_input_id",inputs) | |
return super().generate(position_ids=position_ids, attention_mask=attention_mask,inputs=inputs,beacon_skip_first=beacon_skip_first, beacon_skip_last= beacon_skip_last, **kwargs) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
# print("prepare_ids",input_ids) | |
model_inputs = {"input_ids": input_ids} | |
model_inputs["beacon_skip_first"]=beacon_skip_first | |
model_inputs["beacon_skip_last"]=beacon_skip_last | |
if 'image_features' in kwargs: | |
model_inputs["image_features"] = kwargs['image_features'] | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
AutoConfig.register("llava_qwen", LlavaQwenConfig) | |
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenForCausalLM) | |