Spaces:
Configuration error
Configuration error
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: | |
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import ast | |
import os | |
import copy | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import pathlib | |
from typing import Dict, Optional, Sequence, List | |
from PIL import Image, ImageFile | |
from packaging import version | |
import numpy as np | |
import time | |
import random | |
import yaml | |
import math | |
import re | |
import torch | |
import transformers | |
import tokenizers | |
import deepspeed | |
from transformers import AutoConfig | |
from torch.utils.data import Dataset | |
from videoxl.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX | |
from videoxl.train.llava_trainer import LLaVATrainer | |
from videoxl.train.pretrain_llava_trainer import Pre_LLaVATrainer | |
from videoxl import conversation as conversation_lib | |
from videoxl.model import * | |
from videoxl.mm_utils import process_highres_image, process_anyres_image, process_highres_image_crop_split, tokenizer_image_token | |
from videoxl.utils import rank0_print, process_video_with_pyav | |
torch.multiprocessing.set_sharing_strategy("file_system") | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
local_rank = None | |
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse("0.14") | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
model_class_name: Optional[str] = field(default=None, metadata={"help": "Used to init model class, format is XXXXForCausalLM. e.g. currently XXXX is chosen from LlavaLlama, LlavaMixtral, LlavaMistral, Llama"}) | |
mm_tunable_parts: Optional[str] = field( | |
default=None, metadata={"help": 'Could be "mm_mlp_adapter", "mm_vision_resampler", "mm_vision_tower,mm_mlp_adapter,mm_language_model", "mm_vision_tower,mm_mlp_adapter,mm_language_model", "mm_mlp_adapter,mm_language_model"'} | |
) | |
# deciding which part of the multimodal model to tune, will overwrite other previous settings | |
version: Optional[str] = field(default="v0") | |
freeze_backbone: bool = field(default=False) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
tune_mm_vision_resampler: bool = field(default=False) | |
vision_tower: Optional[str] = field(default=None) | |
vision_tower_pretrained: Optional[str] = field(default=None) # default to the last layer | |
unfreeze_mm_vision_tower: bool = field(default=False) | |
unfreeze_language_model: bool = field(default=False) | |
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
mm_projector_type: Optional[str] = field(default="linear") | |
mm_use_im_start_end: bool = field(default=False) | |
mm_use_im_patch_token: bool = field(default=True) | |
mm_patch_merge_type: Optional[str] = field(default="flat") | |
mm_vision_select_feature: Optional[str] = field(default="patch") | |
mm_resampler_type: Optional[str] = field(default=None) | |
mm_mask_drop_mode: str = field(default="fixed") | |
mm_mask_drop_skip_percentage: float = field(default=0.0) | |
mm_mask_drop_ratio: float = field(default=0.25) | |
mm_mask_drop_ratio_upper: Optional[float] = field(default=None) | |
mm_mask_drop_ratio_lower: Optional[float] = field(default=None) | |
mm_spatial_pool_stride: Optional[int] = field(default=None) | |
mm_spatial_pool_mode: str = field(default="average") | |
mm_spatial_pool_out_channels: Optional[int] = field(default=None) | |
mm_perceiver_depth: Optional[int] = field(default=3) | |
mm_perceiver_latents: Optional[int] = field(default=32) | |
mm_perceiver_ff_mult: Optional[float] = field(default=4) | |
mm_perceiver_pretrained: Optional[str] = field(default=None) | |
mm_qformer_depth: Optional[int] = field(default=3) | |
mm_qformer_latents: Optional[int] = field(default=32) | |
mm_qformer_pretrained: Optional[str] = field(default=None) | |
rope_scaling_factor: Optional[float] = field(default=None) | |
rope_scaling_type: Optional[str] = field(default=None) | |
s2: Optional[bool] = field(default=False) | |
s2_scales: Optional[str] = field(default="336,672,1008") | |
use_pos_skipping: Optional[bool] = field(default=False) | |
pos_skipping_range: Optional[int] = field(default=4096) | |
enable_beacon: bool = field( | |
default=True, | |
metadata={'help': 'Enable activation beacon?'} | |
) | |
beacon_window: Optional[int] = field( | |
default=None, | |
metadata={'help': 'The initial sliding window size.'} | |
) | |
beacon_stride: Optional[int] = field( | |
default=None, | |
metadata={'help': 'The stride of the sliding window.'} | |
) | |
beacon_attn: Optional[str] = field( | |
default=None, | |
metadata={'help': 'How to assign attention masks of beacon tokens? {segmentation, step-expansion, full-converage}'} | |
) | |
beacon_ratio: Optional[List[int]] = field( | |
default=None, | |
metadata={'help': 'Condensing ratios for beacons.'} | |
) | |
beacon_ratio_mix: Optional[str] = field( | |
default=None, | |
metadata={'help': 'How to determine the beacon_ratio for each input. {step-random, instance-random, adapt-x}'} | |
) | |
beacon_param: Optional[List[str]] = field( | |
default=None, | |
metadata={'help': 'The introduced parameters for beacon.'} | |
) | |
beacon_embed_init: str = field( | |
default="eos", | |
metadata={'help': 'Initialize beacon embedding from eos/bos embedding.'} | |
) | |
beacon_sink_size: Optional[int] = field( | |
default=None, | |
metadata={'help': 'The number of activations that are always kept in the head of the sequence according to StreamingLLM.'} | |
) | |
beacon_attend_prev: Optional[bool] = field( | |
default=None, | |
metadata={'help': 'Can beacon tokens attend to previous beacon tokens?'} | |
) | |
beacon_pos: Optional[str] = field( | |
default=None, | |
metadata={'help': 'Where to put beacon tokens? {append, interleave}'} | |
) | |
beacon_parallel_window: Optional[int] = field( | |
default=None, | |
metadata={'help': 'How many windows to run in parallel?'} | |
) | |
beacon_accum: Optional[bool] = field( | |
default=True, | |
metadata={'help': 'Can beacon tokens attend to previous beacon tokens?'} | |
) | |
class DataArguments: | |
data_path: str = field(default=None, metadata={"help": "Path to the training data, in llava's instruction.json format. Supporting multiple json files via /path/to/{a,b,c}.json"}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = False | |
image_folder: Optional[str] = field(default=None) | |
image_aspect_ratio: str = "square" | |
image_grid_pinpoints: Optional[str] = field(default=None) | |
image_crop_resolution: Optional[int] = field(default=None) | |
image_split_resolution: Optional[int] = field(default=None) | |
video_folder: Optional[str] = field(default=None) | |
video_fps: Optional[int] = field(default=1) | |
frames_upbound: Optional[int] = field(default=0) | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
freeze_mm_vision_resampler: bool = field(default=False) | |
mpt_attn_impl: Optional[str] = field(default="triton") | |
model_max_length: int = field( | |
default=4096, | |
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, | |
) | |
double_quant: bool = field(default=True, metadata={"help": "Compress the quantization statistics through double quantization."}) | |
quant_type: str = field(default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}) | |
bits: int = field(default=16, metadata={"help": "How many bits to use."}) | |
lora_enable: bool = False | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
mm_projector_lr: Optional[float] = None | |
mm_vision_tower_lr: Optional[float] = None | |
group_by_varlen: bool = field(default=False) | |
group_by_modality_length: bool = field(default=False) | |
group_by_modality_length_auto: bool = field(default=False) | |
auto_find_batch_size: bool = field(default=False) | |
gradient_checkpointing: bool = field(default=True) | |
verbose_logging: bool = field(default=False) | |
attn_implementation: str = field(default="flash_attention_2", metadata={"help": "Use transformers attention implementation."}) | |
group_by_stride: str = "none" | |
sort_by_stride: Optional[str] = None | |
pretrain: bool = field(default=False) | |
# use_reentrant: bool = field(default=False) | |
# @dataclass | |
# class EvaluationArguments: | |
# eval_num_processes: int = field(default=1) | |
# task_names: str = field(default=None) | |
# model: str = field(default="llava") | |
# model_args: Optional[str] = field(default=None) | |
# num_fewshot: Optional[int] = field(default=None) | |
# batch_size: int = field(default=1) | |
# device: Optional[str] = field(default=None) | |
# limit: Optional[int] = field(default=None) | |
# check_integrity: Optional[bool] = field(default=False) | |
# show_task_to_terminal: Optional[bool] = field(default=False) | |
# log_samples: Optional[bool] = field(default=True) | |
# gen_kwargs: Optional[str] = field(default="") | |
# log_samples_suffix: Optional[str] = field(default="") | |
# output_path: Optional[str] = field(default="./logs/") | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"] | |
for name, module in model.named_modules(): | |
if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
continue | |
if isinstance(module, cls): | |
names = name.split(".") | |
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
if "lm_head" in lora_module_names: # needed for 16-bit | |
lora_module_names.remove("lm_head") | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
if hasattr(trainer.args, "tune_mm_mlp_adapter") and trainer.args.tune_mm_mlp_adapter: | |
check_only_save_mm_adapter_tunnable = True | |
# only has mm_mlp_adapter and mm_vision_resampler in the tuneable parts | |
elif hasattr(trainer.args, "mm_tunable_parts") and (len(trainer.args.mm_tunable_parts.split(",")) == 1 and ("mm_mlp_adapter" in trainer.args.mm_tunable_parts or "mm_vision_resampler" in trainer.args.mm_tunable_parts)): | |
check_only_save_mm_adapter_tunnable = True | |
else: | |
check_only_save_mm_adapter_tunnable = False | |
trainer.accelerator.wait_for_everyone() | |
torch.cuda.synchronize() | |
rank0_print(f"Only save projectors: {check_only_save_mm_adapter_tunnable}") | |
if check_only_save_mm_adapter_tunnable: | |
# Only save Adapter | |
keys_to_match = ["mm_projector", "vision_resampler"] | |
if getattr(trainer.args, "use_im_start_end", False): | |
keys_to_match.extend(["embed_tokens", "embed_in"]) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) | |
trainer.model.config.save_pretrained(output_dir) | |
current_folder = output_dir.split("/")[-1] | |
parent_folder = os.path.dirname(output_dir) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
if current_folder.startswith("checkpoint-"): | |
mm_projector_folder = os.path.join(parent_folder, "mm_projector") | |
os.makedirs(mm_projector_folder, exist_ok=True) | |
torch.save(weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin")) | |
else: | |
torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin")) | |
return | |
if trainer.deepspeed: | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
for text in strings | |
] | |
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] | |
input_ids_lens = labels_lens = [tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def _mask_targets(target, tokenized_lens, speakers): | |
# cur_idx = 0 | |
cur_idx = tokenized_lens[0] | |
tokenized_lens = tokenized_lens[1:] | |
target[:cur_idx] = IGNORE_INDEX | |
for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
if speaker == "human": | |
target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX | |
cur_idx += tokenized_len | |
def _add_speaker_and_signal(header, source, get_conversation=True): | |
"""Add speaker and start/end signal on each round.""" | |
BEGIN_SIGNAL = "### " | |
END_SIGNAL = "\n" | |
conversation = header | |
for sentence in source: | |
from_str = sentence["from"] | |
if from_str.lower() == "human": | |
from_str = conversation_lib.default_conversation.roles[0] | |
elif from_str.lower() == "gpt": | |
from_str = conversation_lib.default_conversation.roles[1] | |
else: | |
from_str = "unknown" | |
sentence["value"] = BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL | |
if get_conversation: | |
conversation += sentence["value"] | |
conversation += BEGIN_SIGNAL | |
return conversation | |
def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: | |
is_multimodal = data_args.is_multimodal | |
if not is_multimodal: | |
return sources | |
for source in sources: | |
for sentence in source: | |
# TODO maybe this should be changed for interleaved data? | |
# if DEFAULT_IMAGE_TOKEN in sentence["value"] and not sentence["value"].startswith(DEFAULT_IMAGE_TOKEN): | |
# only check for num_im=1 | |
num_im = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) | |
if num_im == 1 and DEFAULT_IMAGE_TOKEN in sentence["value"] and not sentence["value"].startswith(DEFAULT_IMAGE_TOKEN): | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() | |
sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] | |
sentence["value"] = sentence["value"].strip() | |
if "mmtag" in conversation_lib.default_conversation.version: | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>") | |
replace_token = DEFAULT_IMAGE_TOKEN | |
if data_args.mm_use_im_start_end: | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
# For videoInstruct-100k noisy_data. TODO: Ask Yuanhan to clean the data instead of leaving the noise code here. | |
sentence["value"] = sentence["value"].replace("QA_GT_caption_based_noisy", "") | |
return sources | |
def preprocess_llama_2(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 | |
# Mask targets | |
sep = "[/INST] " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_gemma(sources: List[List[Dict[str, str]]], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: | |
conv: conversation_lib.Conversation = conversation_lib.default_conversation.copy() | |
roles: Dict[str, str] = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations: List[str] = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source: List[Dict[str, str]] = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role: str = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids: torch.Tensor = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) | |
else: | |
input_ids: torch.Tensor = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets: torch.Tensor = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.GEMMA | |
# Mask target | |
sep: str = conv.sep + conv.roles[1] | |
for conversation, target in zip(conversations, targets): | |
total_len: int = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds: List[str] = conversation.split(conv.sep) | |
re_rounds = [] | |
for conv_idx in range(0, len(rounds), 2): | |
re_rounds.append(conv.sep.join(rounds[conv_idx : conv_idx + 2])) | |
cur_len = 1 # Ignore <bos> | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(re_rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep # Re-append sep because split on this | |
# Now "".join(parts)==rou | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) - 1 # Ignore <bos> | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 # Ignore <bos> | |
else: | |
round_len = len(tokenizer(rou).input_ids) - 1 # Ignore <bos> | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 # Ignore <bos> | |
round_len += 2 # sep: <end_of_turn>\n takes 2 tokens | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print(f"warning: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: | |
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} | |
im_start, im_end = tokenizer.additional_special_tokens_ids | |
nl_tokens = tokenizer("\n").input_ids | |
_system = tokenizer("system").input_ids + nl_tokens | |
_user = tokenizer("user").input_ids + nl_tokens | |
_assistant = tokenizer("assistant").input_ids + nl_tokens | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens | |
input_id += system | |
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens | |
assert len(input_id) == len(target) | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
if has_image and "<image>" in sentence["value"]: | |
num_im = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) | |
# multi image can start with text first | |
if num_im == 1: | |
assert sentence["value"].startswith("<image>"), print(sentence["value"]) | |
matches = re.findall("<image>", sentence["value"]) | |
num_image = len(matches) | |
_input_id = tokenizer(role).input_ids + nl_tokens + [IMAGE_TOKEN_INDEX] * num_image + nl_tokens + tokenizer(sentence["value"][len("<image>") * num_image :]).input_ids + [im_end] + nl_tokens | |
else: | |
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens | |
input_id += _input_id | |
if role == "<|im_start|>user": | |
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens | |
elif role == "<|im_start|>assistant": | |
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens | |
else: | |
raise NotImplementedError | |
target += _target | |
assert len(input_id) == len(target) | |
# input_id += [tokenizer.pad_token_id] * (max_len - len(input_id)) | |
# target += [IGNORE_INDEX] * (max_len - len(target)) | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return dict( | |
input_ids=input_ids, # tensor(bs x seq_len) | |
labels=targets, # tensor(bs x seq_len) | |
# attention_mask=input_ids.ne(tokenizer.pad_token_id), # tensor(bs x seq_len) | |
) | |
def preprocess_llama3( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False, | |
max_len=2048, | |
system_message: str = "You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.", | |
) -> Dict: | |
# roles = {"human": "<|start_header_id|>user<|end_header_id|>", "gpt": "<|start_header_id|>assistant<|end_header_id|>"} | |
roles = {"human": "user", "gpt": "assistant"} | |
# Add image tokens to tokenizer as a special tokens | |
tokenizer.add_tokens(["<image>"], special_tokens=True) | |
image_token_index = tokenizer.convert_tokens_to_ids("<image>") | |
bos_token_id = tokenizer.convert_tokens_to_ids("<|begin_of_text|>") | |
start_header_id = tokenizer.convert_tokens_to_ids("<|start_header_id|>") | |
end_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") | |
eot_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
unmask_tokens = ["<|begin_of_text|>", "<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "\n\n"] | |
unmask_tokens_idx = [tokenizer.convert_tokens_to_ids(tok) for tok in unmask_tokens] | |
# After update, calling tokenizer of llama3 will | |
# auto add bos id for the tokens. ヽ(`⌒´)ノ | |
def safe_tokenizer_llama3(text): | |
input_ids = tokenizer(text).input_ids | |
if input_ids[0] == bos_token_id: | |
input_ids = input_ids[1:] | |
return input_ids | |
nl_tokens = tokenizer.convert_tokens_to_ids("\n\n") | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
# New version, use apply chat template | |
# Build system message for each sentence | |
input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) | |
target += [IGNORE_INDEX] * len(input_id) | |
for conv in source: | |
# Make sure llava data can load | |
try: | |
role = conv["role"] | |
content = conv["content"] | |
except: | |
role = conv["from"] | |
content = conv["value"] | |
role = roles.get(role, role) | |
conv = [{"role" : role, "content" : content}] | |
# First is bos token we don't need here | |
encode_id = tokenizer.apply_chat_template(conv)[1:] | |
input_id += encode_id | |
if role in ["user", "system"]: | |
target += [IGNORE_INDEX] * len(encode_id) | |
else: | |
target += encode_id | |
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" | |
for idx, encode_id in enumerate(input_id): | |
if encode_id in unmask_tokens_idx: | |
target[idx] = encode_id | |
if encode_id == image_token_index: | |
input_id[idx] = IMAGE_TOKEN_INDEX | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return dict( | |
input_ids=input_ids, # tensor(bs x seq_len) | |
labels=targets, # tensor(bs x seq_len) | |
) | |
def preprocess_v1(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: | |
round_len -= 1 | |
instruction_len -= 1 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_mpt(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT | |
# Mask targets | |
sep = conv.sep + conv.roles[1] | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep) | |
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt | |
for conv_idx in range(3, len(rounds), 2): | |
re_rounds.append(conv.sep.join(rounds[conv_idx : conv_idx + 2])) # user + gpt | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(re_rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 | |
if i != 0 and getattr(tokenizer, "legacy", False) and IS_TOKENIZER_GREATER_THAN_0_14: | |
round_len += 1 | |
instruction_len += 1 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f"(#turns={len(re_rounds)} ignored)") | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_plain( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
assert len(source) == 2 | |
assert DEFAULT_IMAGE_TOKEN in source[0]["value"] | |
source[0]["value"] = DEFAULT_IMAGE_TOKEN | |
conversation = source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep | |
conversations.append(conversation) | |
# tokenize conversations | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer)) | |
target[:tokenized_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=targets) | |
def preprocess(sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: | |
""" | |
Given a list of sources, each is a conversation list. This transform: | |
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
2. Concatenate conversations together; | |
3. Tokenize the concatenated conversation; | |
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
""" | |
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
return preprocess_plain(sources, tokenizer) | |
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: | |
return preprocess_llama_2(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version.startswith("v1"): | |
return preprocess_v1(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version == "mpt": | |
return preprocess_mpt(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version == "qwen": | |
return preprocess_qwen(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version == "gemma": | |
return preprocess_gemma(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version == "llama_v3": | |
return preprocess_llama3(sources, tokenizer, has_image=has_image) | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
header = f"{conversation_lib.default_conversation.system}\n\n" | |
conversation = _add_speaker_and_signal(header, source) | |
conversations.append(conversation) | |
# tokenize conversations | |
def get_tokenize_len(prompts): | |
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] | |
if has_image: | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] | |
else: | |
conversations_tokenized = _tokenize_fn(conversations, tokenizer) | |
input_ids = conversations_tokenized["input_ids"] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
if has_image: | |
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) | |
else: | |
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] | |
speakers = [sentence["from"] for sentence in source] | |
_mask_targets(target, tokenized_lens, speakers) | |
return dict(input_ids=input_ids, labels=targets) | |
class LazySupervisedDataset(Dataset): | |
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments): | |
super(LazySupervisedDataset, self).__init__() | |
self.tokenizer = tokenizer | |
self.list_data_dict = [] | |
# Handle multiple JSON files specified in the data_path | |
if "{" in data_path and "}" in data_path: | |
base_path, file_pattern = re.match(r"^(.*)\{(.*)\}\.json$", data_path).groups() | |
file_names = file_pattern.split(",") | |
rank0_print(f"Loading {file_names} from {base_path}") | |
data_args.dataset_paths = [] | |
for file_name in file_names: | |
data_args.dataset_paths.append(f"{base_path}{file_name}.json") | |
full_path = f"{base_path}{file_name}.json" | |
rank0_print(f"Loading {full_path}") | |
with open(full_path, "r") as file: | |
cur_data_dict = json.load(file) | |
rank0_print(f"Loaded {len(cur_data_dict)} samples from {full_path}") | |
self.list_data_dict.extend(cur_data_dict) | |
elif data_path.endswith(".yaml"): | |
with open(data_path, "r") as file: | |
yaml_data = yaml.safe_load(file) | |
datasets = yaml_data.get("datasets") | |
# file should be in the format of: | |
# datasets: | |
# - json_path: xxxx1.json | |
# sampling_strategy: first:1000 | |
# - json_path: xxxx2.json | |
# sampling_strategy: end:3000 | |
# - json_path: xxxx3.json | |
# sampling_strategy: random:999 | |
data_args.dataset_paths = [dataset.get("json_path") for dataset in datasets] | |
for dataset in datasets: | |
json_path = dataset.get("json_path") | |
sampling_strategy = dataset.get("sampling_strategy", "all") | |
sampling_number = None | |
rank0_print(f"Loading {json_path} with {sampling_strategy} sampling strategy") | |
with open(json_path, "r") as json_file: | |
cur_data_dict = json.load(json_file) | |
if ":" in sampling_strategy: | |
sampling_strategy, sampling_number = sampling_strategy.split(":") | |
if "%" in sampling_number: | |
sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100) | |
else: | |
sampling_number = int(sampling_number) | |
# Apply the sampling strategy | |
if sampling_strategy == "first" and sampling_number is not None: | |
cur_data_dict = cur_data_dict[:sampling_number] | |
elif sampling_strategy == "end" and sampling_number is not None: | |
cur_data_dict = cur_data_dict[-sampling_number:] | |
elif sampling_strategy == "random" and sampling_number is not None: | |
random.shuffle(cur_data_dict) | |
cur_data_dict = cur_data_dict[:sampling_number] | |
rank0_print(f"Loaded {len(cur_data_dict)} samples from {json_path}") | |
self.list_data_dict.extend(cur_data_dict) | |
else: | |
data_args.dataset_paths = [data_path] | |
rank0_print(f"Loading {data_path}") | |
with open(data_path, "r") as file: | |
cur_data_dict = json.load(file) | |
rank0_print(f"Loaded {len(cur_data_dict)} samples from {data_path}") | |
self.list_data_dict.extend(cur_data_dict) | |
rank0_print("Formatting inputs...Skip in lazy mode") | |
self.tokenizer = tokenizer | |
self.data_args = data_args | |
def __len__(self): | |
return len(self.list_data_dict) | |
def lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
img_tokens = 128 if "image" in sample else 0 | |
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens) | |
return length_list | |
def modality_lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"]) | |
cur_len = cur_len if ("image" in sample) or ("video" in sample) else -cur_len | |
length_list.append(cur_len) | |
return length_list | |
# @property | |
# def modality_lengths(self): | |
# length_list = [] | |
# for sample in self.list_data_dict: | |
# cur_len = sample["patch_num"] | |
# length_list.append(cur_len) | |
# return length_list | |
def process_image(self, image_file): | |
image_folder = self.data_args.image_folder | |
processor = self.data_args.image_processor | |
# print(f"\n\nInspecting the image path, folder = {image_folder}, image={image_file}\n\n") | |
try: | |
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") | |
except Exception as exn: | |
print(f"Failed to open image {image_file}. Exception:", exn) | |
raise exn | |
image_size = image.size | |
if self.data_args.image_aspect_ratio == "highres": | |
image = process_highres_image(image, self.data_args.image_processor, self.data_args.image_grid_pinpoints) | |
elif self.data_args.image_aspect_ratio == "anyres" or "anyres_max" in self.data_args.image_aspect_ratio: | |
image = process_anyres_image(image, self.data_args.image_processor, self.data_args.image_grid_pinpoints) | |
elif self.data_args.image_aspect_ratio == "crop_split": | |
image = process_highres_image_crop_split(image, self.data_args) | |
elif self.data_args.image_aspect_ratio == "pad": | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
else: | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
return image, image_size, "image" | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
# TODO: define number of retries somewhere else | |
num_base_retries = 3 | |
num_final_retries = 300 | |
# try the current sample first | |
for attempt_idx in range(num_base_retries): | |
try: | |
sample = self._get_item(i) | |
return sample | |
except Exception as e: | |
# sleep 1s in case it is a cloud disk issue | |
print(f"[Try #{attempt_idx}] Failed to fetch sample {i}. Exception:", e) | |
time.sleep(1) | |
# try other samples, in case it is file corruption issue | |
for attempt_idx in range(num_base_retries): | |
try: | |
next_index = min(i + 1, len(self.list_data_dict) - 1) | |
# sample_idx = random.choice(range(len(self))) | |
sample = self._get_item(next_index) | |
return sample | |
except Exception as e: | |
# no need to sleep | |
print(f"[Try other #{attempt_idx}] Failed to fetch sample {next_index}. Exception:", e) | |
pass | |
try: | |
sample = self._get_item(i) | |
return sample | |
except Exception as e: | |
raise e | |
def _get_item(self, i) -> Dict[str, torch.Tensor]: | |
sources = self.list_data_dict[i] | |
if isinstance(i, int): | |
sources = [sources] | |
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
if "image" in sources[0]: | |
image_file = self.list_data_dict[i]["image"] | |
if type(image_file) is list: | |
image = [self.process_image(f) for f in image_file] | |
else: | |
image = [self.process_image(image_file)] | |
sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args) | |
elif "video" in sources[0]: | |
video_file = self.list_data_dict[i]["video"] | |
video_folder = self.data_args.video_folder | |
video_file = os.path.join(video_folder, video_file) | |
suffix = video_file.split(".")[-1] | |
if not os.path.exists(video_file): | |
print("File {} not exist!".format(video_file)) | |
try: | |
video = process_video_with_pyav(video_file, self.data_args) | |
# using videoreader | |
# if "shareVideoGPTV" not in video_file and "liangke" not in video_file: | |
# vr = VideoReader(video_file, ctx=cpu(0)) | |
# total_frame_num = len(vr) | |
# avg_fps = round(vr.get_avg_fps() / self.data_args.video_fps) | |
# frame_idx = [i for i in range(0, total_frame_num, avg_fps)] | |
# if self.data_args.frames_upbound > 0: | |
# if len(frame_idx) > self.data_args.frames_upbound: | |
# uniform_sampled_frames = np.linspace(0, total_frame_num - 1, self.data_args.frames_upbound, dtype=int) | |
# frame_idx = uniform_sampled_frames.tolist() | |
# video = vr.get_batch(frame_idx).asnumpy() | |
# video = np.array(video) | |
# else: | |
# if "liangke" in video_file: | |
# video_file = self.list_data_dict[i]["video"] | |
# frame_files = [os.path.join(video_file, f) for f in os.listdir(video_file) if os.path.isfile(os.path.join(video_file, f))] | |
# frame_files.sort() # Ensure the frames are sorted if they are named sequentially | |
# # TODO: Hard CODE: Determine the indices for uniformly sampling 10 frames | |
# num_frames_to_sample = 10 | |
# total_frames = len(frame_files) | |
# sampled_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int) | |
# # Read and store the sampled frames | |
# video = [] | |
# for idx in sampled_indices: | |
# frame_path = frame_files[idx] | |
# try: | |
# with Image.open(frame_path) as img: | |
# frame = img.convert("RGB") | |
# video.append(frame) | |
# except IOError: | |
# print(f"Failed to read frame at path: {frame_path}") | |
processor = self.data_args.image_processor | |
image = processor.preprocess(video, return_tensors="pt")["pixel_values"] | |
image = [(image, video[0].size, "video")] | |
sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args) | |
except Exception as e: | |
print(f"Error: {e}") | |
print(f"Failed to read video file: {video_file}") | |
return self._get_item(i + 1) | |
else: | |
sources = copy.deepcopy([e["conversations"] for e in sources]) | |
has_image = ("image" in self.list_data_dict[i]) or ("video" in self.list_data_dict[i]) | |
data_dict = preprocess(sources, self.tokenizer, has_image=has_image) | |
if "prompt" in data_dict: | |
prompt = data_dict["prompt"] | |
else: | |
prompt = None | |
if isinstance(i, int): | |
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) | |
# image exist in the data | |
if "image" in self.list_data_dict[i]: | |
data_dict["image"] = image | |
elif "video" in self.list_data_dict[i]: | |
data_dict["image"] = image | |
elif self.data_args.is_multimodal: | |
# image does not exist in the data, but the model is multimodal | |
crop_size = self.data_args.image_processor.crop_size | |
data_dict["image"] = [ | |
(torch.zeros(1, 3, crop_size["height"], crop_size["width"]), (crop_size["width"], crop_size["height"]), "text"), | |
] | |
# prompt exist in the data | |
if prompt is not None: | |
data_dict["prompt"] = prompt | |
data_dict["id"] = self.list_data_dict[i].get("id", i) | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def pad_sequence(self, input_ids, batch_first, padding_value): | |
if self.tokenizer.padding_side == "left": | |
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] | |
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) | |
if self.tokenizer.padding_side == "left": | |
input_ids = torch.flip(input_ids, [1]) | |
return input_ids | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) | |
# input_ids, labels, ids = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels", "id")) | |
input_ids = [_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids] | |
labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels] | |
if self.tokenizer.pad_token_id is None: | |
# self.tokenizer.pad_token_id = self.tokenizer.eos_token_id # FIXME: this could only be triggered for llama3 model. | |
self.tokenizer.pad_token_id = 0 # This gets the best result. Don't know why. | |
input_ids = self.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) | |
labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) | |
batch = dict(input_ids=input_ids, labels=labels.long() if labels.dtype == torch.int32 else labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id)) | |
# batch = dict(input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ids=ids) | |
if "image" in instances[0]: | |
images = [instance["image"] for instance in instances] | |
batch["image_sizes"] = [im[1] for im_list in images for im in im_list] | |
batch["modalities"] = [im[2] for im_list in images for im in im_list] | |
images = [im[0] for im_list in images for im in im_list] | |
if all(x is not None and x.shape == images[0].shape for x in images): | |
# Image: (N, P, C, H, W) | |
# Video: (N, F, C, H, W) | |
batch["images"] = torch.stack(images) | |
else: | |
batch["images"] = images | |
if "prompt" in instances[0]: | |
batch["prompts"] = [instance["prompt"] for instance in instances] | |
return batch | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) | |
def get_model(model_args, training_args, bnb_model_from_pretrained_args): | |
assert training_args.attn_implementation | |
if training_args.attn_implementation == "sdpa" and torch.__version__ < "2.1.2": | |
raise ValueError("The 'sdpa' attention implementation requires torch version 2.1.2 or higher.") | |
customized_kwargs = dict() | |
customized_kwargs.update(bnb_model_from_pretrained_args) | |
cfg_pretrained = None | |
overwrite_config = {} | |
if any( | |
[ | |
model_args.rope_scaling_factor is not None, | |
model_args.rope_scaling_type is not None, | |
model_args.mm_spatial_pool_stride is not None, | |
model_args.mm_spatial_pool_out_channels is not None, | |
model_args.mm_spatial_pool_mode is not None, | |
model_args.mm_resampler_type is not None, | |
] | |
): | |
cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path) | |
overwrite_config["beacon_window"] = model_args.beacon_window | |
overwrite_config["beacon_stride"] = model_args.beacon_stride | |
overwrite_config["beacon_attn"] = model_args.beacon_attn | |
overwrite_config["beacon_attend_prev"] = model_args.beacon_attend_prev | |
overwrite_config["beacon_sink_size"] = model_args.beacon_sink_size | |
overwrite_config["beacon_ratio"] = model_args.beacon_ratio | |
overwrite_config["beacon_ratio_mix"] = model_args.beacon_ratio_mix | |
overwrite_config["beacon_param"] = model_args.beacon_param | |
overwrite_config["beacon_pos"] = model_args.beacon_pos | |
overwrite_config["beacon_parallel_window"] = 1 | |
overwrite_config["beacon_embed_init"] = "eos" | |
overwrite_config["enable_beacon"]=model_args.enable_beacon | |
overwrite_config["beacon_accum"]=model_args.beacon_accum | |
if model_args.use_pos_skipping is not None and model_args.pos_skipping_range is not None: | |
overwrite_config["use_pos_skipping"] = model_args.use_pos_skipping | |
overwrite_config["pos_skipping_range"] = model_args.pos_skipping_range | |
if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None: | |
overwrite_config["rope_scaling"] = { | |
"factor": model_args.rope_scaling_factor, | |
"type": model_args.rope_scaling_type, | |
} | |
if training_args.model_max_length is None: | |
training_args.model_max_length = cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor | |
overwrite_config["max_sequence_length"] = training_args.model_max_length | |
assert training_args.model_max_length == int(cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor), print( | |
f"model_max_length: {training_args.model_max_length}, max_position_embeddings: {cfg_pretrained.max_position_embeddings}, rope_scaling_factor: {model_args.rope_scaling_factor}" | |
) | |
# overwrite_config["max_sequence_length"] = model_args.max_sequence_length | |
# overwrite_config["tokenizer_model_max_length"] = model_args.tokenizer_model_max_length | |
if model_args.mm_spatial_pool_stride is not None and model_args.mm_spatial_pool_out_channels is not None and model_args.mm_spatial_pool_mode is not None and model_args.mm_resampler_type is not None: | |
overwrite_config["mm_resampler_type"] = model_args.mm_resampler_type | |
overwrite_config["mm_spatial_pool_stride"] = model_args.mm_spatial_pool_stride | |
overwrite_config["mm_spatial_pool_out_channels"] = model_args.mm_spatial_pool_out_channels | |
overwrite_config["mm_spatial_pool_mode"] = model_args.mm_spatial_pool_mode | |
if overwrite_config: | |
assert cfg_pretrained is not None, "cfg_pretrained is None" | |
rank0_print(f"Overwriting config with {overwrite_config}") | |
for k, v in overwrite_config.items(): | |
setattr(cfg_pretrained, k, v) | |
customized_kwargs["config"] = cfg_pretrained | |
if model_args.model_class_name is not None: | |
actual_model_class_name = f"{model_args.model_class_name}ForCausalLM" | |
model_class = getattr(transformers, actual_model_class_name) | |
rank0_print(f"Using model class {model_class} from {model_args.model_class_name}") | |
model = model_class.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
elif model_args.vision_tower is not None: | |
if "mixtral" in model_args.model_name_or_path.lower(): | |
model = LlavaMixtralForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock | |
deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) | |
elif "mistral" in model_args.model_name_or_path.lower() or "zephyr" in model_args.model_name_or_path.lower(): | |
model = LlavaMistralForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
elif ( | |
"wizardlm-2" in model_args.model_name_or_path.lower() | |
or "vicuna" in model_args.model_name_or_path.lower() | |
or "llama" in model_args.model_name_or_path.lower() | |
or "yi" in model_args.model_name_or_path.lower() | |
or "nous-hermes" in model_args.model_name_or_path.lower() | |
and "wizard-2" in model_args.model_name_or_path.lower() | |
): | |
model = LlavaLlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
elif "qwen" in model_args.model_name_or_path.lower(): | |
if "moe" in model_args.model_name_or_path.lower() or "A14B" in model_args.model_name_or_path: | |
model = LlavaQwenMoeForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock | |
deepspeed.utils.set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) | |
else: | |
if training_args.pretrain: | |
model = Naive_LlavaQwenForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
else: | |
model = LlavaQwenForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
elif "gemma" in model_args.model_name_or_path.lower(): | |
model = LlavaGemmaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
else: | |
raise ValueError(f"Unknown model class {model_args}") | |
else: | |
model = transformers.LlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=training_args.attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
low_cpu_mem_usage=False, | |
**customized_kwargs, | |
) | |
return model | |
def train(attn_implementation=None): | |
global local_rank | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
training_args.gradient_checkpointing_kwargs={"use_reentrant": False} | |
training_args.group_by_stride="strict" | |
if training_args.verbose_logging: | |
rank0_print(f"Inspecting experiment hyperparameters:\n") | |
rank0_print(f"model_args = {vars(model_args)}\n\n") | |
rank0_print(f"data_args = {vars(data_args)}\n\n") | |
rank0_print(f"training_args = {vars(training_args)}\n\n") | |
# rank0_print(f"evaluation_args = {vars(evaluation_args)}\n\n") | |
local_rank = training_args.local_rank | |
compute_dtype = torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
bnb_model_from_pretrained_args = {} | |
if training_args.bits in [4, 8]: | |
from transformers import BitsAndBytesConfig | |
bnb_model_from_pretrained_args.update( | |
dict( | |
device_map={"": training_args.device}, | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=training_args.double_quant, | |
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} | |
), | |
) | |
) | |
model = get_model(model_args, training_args, bnb_model_from_pretrained_args) | |
model.config.use_cache = False | |
if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None: | |
model.config.rope_scaling = { | |
"factor": model_args.rope_scaling_factor, | |
"type": model_args.rope_scaling_type, | |
} | |
if model_args.freeze_backbone: | |
model.model.requires_grad_(False) | |
if training_args.bits in [4, 8]: | |
from peft import prepare_model_for_kbit_training | |
model.config.torch_dtype = torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) | |
if training_args.gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if training_args.lora_enable: | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=training_args.lora_r, | |
lora_alpha=training_args.lora_alpha, | |
target_modules=find_all_linear_names(model), | |
lora_dropout=training_args.lora_dropout, | |
bias=training_args.lora_bias, | |
task_type="CAUSAL_LM", | |
) | |
if training_args.bits == 16: | |
if training_args.bf16: | |
model.to(torch.bfloat16) | |
if training_args.fp16: | |
model.to(torch.float16) | |
rank0_print("Adding LoRA adapters...") | |
model = get_peft_model(model, lora_config) | |
if "mistral" in model_args.model_name_or_path.lower() or "mixtral" in model_args.model_name_or_path.lower() or "zephyr" in model_args.model_name_or_path.lower(): | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="left") | |
elif "qwen" in model_args.model_name_or_path.lower(): | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right") | |
elif ( | |
"wizardlm-2" in model_args.model_name_or_path.lower() | |
or "vicuna" in model_args.model_name_or_path.lower() | |
or "llama" in model_args.model_name_or_path.lower() | |
or "yi" in model_args.model_name_or_path.lower() | |
or "nous-hermes" in model_args.model_name_or_path.lower() | |
and "wizard-2" in model_args.model_name_or_path.lower() | |
): | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
rank0_print(f"Prompt version: {model_args.version}") | |
if model_args.version == "v0": | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(pad_token="[PAD]"), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
elif model_args.version == "v0.5": | |
tokenizer.pad_token = tokenizer.unk_token | |
else: | |
if tokenizer.unk_token is not None: | |
tokenizer.pad_token = tokenizer.unk_token | |
if model_args.version in conversation_lib.conv_templates: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] | |
if model_args.vision_tower is not None: | |
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) | |
vision_tower = model.get_vision_tower() | |
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) | |
data_args.image_processor = vision_tower.image_processor | |
data_args.is_multimodal = True | |
model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
if data_args.image_grid_pinpoints is not None: | |
if isinstance(data_args.image_grid_pinpoints, str) and "x" in data_args.image_grid_pinpoints: | |
try: | |
patch_size = data_args.image_processor.size[0] | |
except Exception as e: | |
patch_size = data_args.image_processor.size["shortest_edge"] | |
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" | |
# Use regex to extract the range from the input string | |
matches = re.findall(r"\((\d+)x(\d+)\)", data_args.image_grid_pinpoints) | |
range_start = tuple(map(int, matches[0])) | |
range_end = tuple(map(int, matches[-1])) | |
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) | |
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] | |
# Multiply all elements by patch_size | |
data_args.image_grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] | |
elif isinstance(data_args.image_grid_pinpoints, str): | |
data_args.image_grid_pinpoints = ast.literal_eval(data_args.image_grid_pinpoints) | |
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints | |
model.config.image_crop_resolution = data_args.image_crop_resolution | |
model.config.image_split_resolution = data_args.image_split_resolution | |
model.config.tokenizer_padding_side = tokenizer.padding_side | |
model.config.tokenizer_model_max_length = tokenizer.model_max_length | |
### Deciding train which part of the model | |
if model_args.mm_tunable_parts is None: # traditional way of deciding which part to train | |
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter | |
model.config.tune_mm_vision_resampler = training_args.tune_mm_vision_resampler = model_args.tune_mm_vision_resampler | |
if model_args.tune_mm_mlp_adapter or model_args.tune_mm_vision_resampler: | |
model.requires_grad_(False) | |
if model_args.tune_mm_mlp_adapter: | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = True | |
if model_args.tune_mm_vision_resampler: | |
for p in model.get_model().vision_resampler.parameters(): | |
p.requires_grad = True | |
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
if training_args.freeze_mm_mlp_adapter: | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = False | |
model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler | |
if training_args.freeze_mm_vision_resampler: | |
for p in model.get_model().vision_resampler.parameters(): | |
p.requires_grad = False | |
model.config.unfreeze_mm_vision_tower = model_args.unfreeze_mm_vision_tower | |
if model_args.unfreeze_mm_vision_tower: | |
vision_tower.requires_grad_(True) | |
else: | |
vision_tower.requires_grad_(False) | |
else: | |
rank0_print(f"Using mm_tunable_parts: {model_args.mm_tunable_parts}") | |
model.config.mm_tunable_parts = training_args.mm_tunable_parts = model_args.mm_tunable_parts | |
# Set the entire model to not require gradients by default | |
model.requires_grad_(False) | |
vision_tower.requires_grad_(False) | |
model.get_model().mm_projector.requires_grad_(False) | |
model.get_model().vision_resampler.requires_grad_(False) | |
# Parse the mm_tunable_parts to decide which parts to unfreeze | |
tunable_parts = model_args.mm_tunable_parts.split(",") | |
if "mm_mlp_adapter" in tunable_parts: | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = True | |
if "mm_vision_resampler" in tunable_parts: | |
for p in model.get_model().vision_resampler.parameters(): | |
p.requires_grad = True | |
if "mm_vision_tower" in tunable_parts: | |
for name, param in model.named_parameters(): | |
if "vision_tower" in name: | |
param.requires_grad_(True) | |
if "mm_language_model" in tunable_parts: | |
for name, param in model.named_parameters(): | |
if "vision_tower" not in name and "mm_projector" not in name and "vision_resampler" not in name: | |
param.requires_grad_(True) | |
total_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters()) | |
trainable_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters() if p.requires_grad) | |
rank0_print(f"Total parameters: ~{total_params/1e6:.2f} MB)") | |
rank0_print(f"Trainable parameters: ~{trainable_params/1e6:.2f} MB)") | |
if training_args.bits in [4, 8]: | |
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) | |
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end | |
model.config.mm_projector_lr = training_args.mm_projector_lr | |
model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr | |
training_args.use_im_start_end = model_args.mm_use_im_start_end | |
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token | |
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) | |
if training_args.bits in [4, 8]: | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_modules(): | |
if isinstance(module, LoraLayer): | |
if training_args.bf16: | |
module = module.to(torch.bfloat16) | |
if "norm" in name: | |
module = module.to(torch.float32) | |
if "lm_head" in name or "embed_tokens" in name: | |
if hasattr(module, "weight"): | |
if training_args.bf16 and module.weight.dtype == torch.float32: | |
module = module.to(torch.bfloat16) | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
if training_args.pretrain: | |
trainer = Pre_LLaVATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) | |
else: | |
trainer = LLaVATrainer( | |
model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
model_args=model_args, | |
**data_module | |
) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
model.config.use_cache = True | |
if training_args.lora_enable: | |
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias) | |
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters()) | |
if training_args.local_rank == 0 or training_args.local_rank == -1: | |
if hasattr(model, "config"): | |
model.config.save_pretrained(training_args.output_dir) | |
if hasattr(model, "generation_config"): | |
model.generation_config.save_pretrained(training_args.output_dir) | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, "non_lora_trainables.bin")) | |
else: | |
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) | |
rank0_print(f"Model saved to {training_args.output_dir}") | |
if __name__ == "__main__": | |
train() | |