Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import gradio as gr | |
from gtts import gTTS | |
from langdetect import detect | |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32) | |
def respond(user_input): | |
if not user_input: | |
return "Please ask something.", None | |
detected_lang = detect(user_input) | |
prompt = f"[INST] {user_input} [/INST]" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Voice output | |
tts = gTTS(text=response, lang='hi' if detected_lang == 'hi' else 'en') | |
tts.save("voice_response.mp3") | |
return response, "voice_response.mp3" | |
iface = gr.Interface( | |
fn=respond, | |
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."), | |
outputs=[gr.Textbox(label="TeachMe Says"), gr.Audio(label="Voice", autoplay=True)], | |
title="TeachMe - Your Smart Tutor", | |
description="Light AI bot with Hindi + English voice support." | |
) | |
iface.launch() | |