Spaces:
Running
Running
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +28 -11
routers/donut_inference.py
CHANGED
@@ -5,12 +5,21 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
5 |
from config import settings
|
6 |
from functools import lru_cache
|
7 |
import os
|
8 |
-
|
9 |
|
10 |
@lru_cache(maxsize=1)
|
11 |
-
def load_model():
|
12 |
-
|
13 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model.to(device)
|
@@ -18,22 +27,30 @@ def load_model():
|
|
18 |
return processor, model, device
|
19 |
|
20 |
|
21 |
-
def process_document_donut(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
worker_pid = os.getpid()
|
23 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
24 |
|
25 |
start_time = time.time()
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
#
|
30 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
31 |
|
32 |
-
#
|
33 |
task_prompt = "<s_cord-v2>"
|
34 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
35 |
|
36 |
-
#
|
37 |
outputs = model.generate(
|
38 |
pixel_values.to(device),
|
39 |
decoder_input_ids=decoder_input_ids.to(device),
|
@@ -47,10 +64,10 @@ def process_document_donut(image):
|
|
47 |
return_dict_in_generate=True,
|
48 |
)
|
49 |
|
50 |
-
#
|
51 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
52 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
53 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() #
|
54 |
|
55 |
end_time = time.time()
|
56 |
processing_time = end_time - start_time
|
|
|
5 |
from config import settings
|
6 |
from functools import lru_cache
|
7 |
import os
|
8 |
+
import requests
|
9 |
|
10 |
@lru_cache(maxsize=1)
|
11 |
+
def load_model(model_url: str):
|
12 |
+
"""
|
13 |
+
Load the processor and model dynamically based on the model URL.
|
14 |
+
|
15 |
+
:param model_url: The URL for the model to use.
|
16 |
+
:return: The processor, model, and device.
|
17 |
+
"""
|
18 |
+
# Assuming the model URL follows a pattern like "https://huggingface.co/{model_name}"
|
19 |
+
model_name = model_url.split("/")[-1] # Extract model name from the URL
|
20 |
+
|
21 |
+
processor = DonutProcessor.from_pretrained(model_name)
|
22 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
23 |
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
model.to(device)
|
|
|
27 |
return processor, model, device
|
28 |
|
29 |
|
30 |
+
def process_document_donut(image, model_url: str):
|
31 |
+
"""
|
32 |
+
Process the document using the DONUT model.
|
33 |
+
|
34 |
+
:param image: The input image to process.
|
35 |
+
:param model_url: The model URL to use for inference.
|
36 |
+
:return: A tuple of the result and processing time.
|
37 |
+
"""
|
38 |
worker_pid = os.getpid()
|
39 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
40 |
|
41 |
start_time = time.time()
|
42 |
|
43 |
+
# Load the model dynamically based on the model_url
|
44 |
+
processor, model, device = load_model(model_url)
|
45 |
|
46 |
+
# Prepare encoder inputs
|
47 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
48 |
|
49 |
+
# Prepare decoder inputs
|
50 |
task_prompt = "<s_cord-v2>"
|
51 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
52 |
|
53 |
+
# Generate answer
|
54 |
outputs = model.generate(
|
55 |
pixel_values.to(device),
|
56 |
decoder_input_ids=decoder_input_ids.to(device),
|
|
|
64 |
return_dict_in_generate=True,
|
65 |
)
|
66 |
|
67 |
+
# Postprocess the result
|
68 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
69 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
70 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # Remove first task start token
|
71 |
|
72 |
end_time = time.time()
|
73 |
processing_time = end_time - start_time
|