Spaces:
Sleeping
Sleeping
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +13 -25
routers/donut_inference.py
CHANGED
@@ -5,16 +5,12 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
5 |
from config import settings
|
6 |
from functools import lru_cache
|
7 |
import os
|
8 |
-
import requests
|
9 |
|
10 |
|
11 |
@lru_cache(maxsize=1)
|
12 |
-
def load_model(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
processor = DonutProcessor.from_pretrained(model_name)
|
17 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
18 |
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
model.to(device)
|
@@ -22,30 +18,22 @@ def load_model(model_url: str):
|
|
22 |
return processor, model, device
|
23 |
|
24 |
|
25 |
-
def process_document_donut(image
|
26 |
-
"""
|
27 |
-
Process the document using the DONUT model.
|
28 |
-
|
29 |
-
:param image: The input image to process.
|
30 |
-
:param model_url: The model URL to use for inference.
|
31 |
-
:return: A tuple of the result and processing time.
|
32 |
-
"""
|
33 |
worker_pid = os.getpid()
|
34 |
-
print(f"
|
35 |
|
36 |
start_time = time.time()
|
37 |
|
38 |
-
|
39 |
-
processor, model, device = load_model(model_url)
|
40 |
|
41 |
-
#
|
42 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
43 |
|
44 |
-
#
|
45 |
task_prompt = "<s_cord-v2>"
|
46 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
47 |
|
48 |
-
#
|
49 |
outputs = model.generate(
|
50 |
pixel_values.to(device),
|
51 |
decoder_input_ids=decoder_input_ids.to(device),
|
@@ -59,14 +47,14 @@ def process_document_donut(image, model_url: str):
|
|
59 |
return_dict_in_generate=True,
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
64 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
65 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() #
|
66 |
|
67 |
end_time = time.time()
|
68 |
processing_time = end_time - start_time
|
69 |
|
70 |
-
print(f"
|
71 |
|
72 |
-
return processor.token2json(sequence), processing_time
|
|
|
5 |
from config import settings
|
6 |
from functools import lru_cache
|
7 |
import os
|
|
|
8 |
|
9 |
|
10 |
@lru_cache(maxsize=1)
|
11 |
+
def load_model():
|
12 |
+
processor = DonutProcessor.from_pretrained(settings.processor)
|
13 |
+
model = VisionEncoderDecoderModel.from_pretrained(settings.model)
|
|
|
|
|
|
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model.to(device)
|
|
|
18 |
return processor, model, device
|
19 |
|
20 |
|
21 |
+
def process_document_donut(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
worker_pid = os.getpid()
|
23 |
+
print(f"Handling inference request with worker PID: {worker_pid}")
|
24 |
|
25 |
start_time = time.time()
|
26 |
|
27 |
+
processor, model, device = load_model()
|
|
|
28 |
|
29 |
+
# prepare encoder inputs
|
30 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
31 |
|
32 |
+
# prepare decoder inputs
|
33 |
task_prompt = "<s_cord-v2>"
|
34 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
35 |
|
36 |
+
# generate answer
|
37 |
outputs = model.generate(
|
38 |
pixel_values.to(device),
|
39 |
decoder_input_ids=decoder_input_ids.to(device),
|
|
|
47 |
return_dict_in_generate=True,
|
48 |
)
|
49 |
|
50 |
+
# postprocess
|
51 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
52 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
53 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
54 |
|
55 |
end_time = time.time()
|
56 |
processing_time = end_time - start_time
|
57 |
|
58 |
+
print(f"Inference done, worker PID: {worker_pid}")
|
59 |
|
60 |
+
return processor.token2json(sequence), processing_time
|