serenarolloh commited on
Commit
49e3b35
·
verified ·
1 Parent(s): f291dba

Update routers/donut_inference.py

Browse files
Files changed (1) hide show
  1. routers/donut_inference.py +13 -25
routers/donut_inference.py CHANGED
@@ -5,16 +5,12 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
5
  from config import settings
6
  from functools import lru_cache
7
  import os
8
- import requests
9
 
10
 
11
  @lru_cache(maxsize=1)
12
- def load_model(model_url: str):
13
- model_name = model_url.replace("https://huggingface.co/", "")
14
- print(f"[Model Loader] Loading model: {model_name}")
15
-
16
- processor = DonutProcessor.from_pretrained(model_name)
17
- model = VisionEncoderDecoderModel.from_pretrained(model_name)
18
 
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
  model.to(device)
@@ -22,30 +18,22 @@ def load_model(model_url: str):
22
  return processor, model, device
23
 
24
 
25
- def process_document_donut(image, model_url: str):
26
- """
27
- Process the document using the DONUT model.
28
-
29
- :param image: The input image to process.
30
- :param model_url: The model URL to use for inference.
31
- :return: A tuple of the result and processing time.
32
- """
33
  worker_pid = os.getpid()
34
- print(f"[Inference] Handling request with worker PID: {worker_pid}")
35
 
36
  start_time = time.time()
37
 
38
- # Load the model dynamically based on the model_url
39
- processor, model, device = load_model(model_url)
40
 
41
- # Prepare encoder inputs
42
  pixel_values = processor(image, return_tensors="pt").pixel_values
43
 
44
- # Prepare decoder inputs
45
  task_prompt = "<s_cord-v2>"
46
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
47
 
48
- # Generate answer
49
  outputs = model.generate(
50
  pixel_values.to(device),
51
  decoder_input_ids=decoder_input_ids.to(device),
@@ -59,14 +47,14 @@ def process_document_donut(image, model_url: str):
59
  return_dict_in_generate=True,
60
  )
61
 
62
- # Postprocess the result
63
  sequence = processor.batch_decode(outputs.sequences)[0]
64
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
65
- sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # Remove first task start token
66
 
67
  end_time = time.time()
68
  processing_time = end_time - start_time
69
 
70
- print(f"[Inference] Done. PID: {worker_pid} | Time taken: {processing_time:.2f} sec")
71
 
72
- return processor.token2json(sequence), processing_time
 
5
  from config import settings
6
  from functools import lru_cache
7
  import os
 
8
 
9
 
10
  @lru_cache(maxsize=1)
11
+ def load_model():
12
+ processor = DonutProcessor.from_pretrained(settings.processor)
13
+ model = VisionEncoderDecoderModel.from_pretrained(settings.model)
 
 
 
14
 
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
  model.to(device)
 
18
  return processor, model, device
19
 
20
 
21
+ def process_document_donut(image):
 
 
 
 
 
 
 
22
  worker_pid = os.getpid()
23
+ print(f"Handling inference request with worker PID: {worker_pid}")
24
 
25
  start_time = time.time()
26
 
27
+ processor, model, device = load_model()
 
28
 
29
+ # prepare encoder inputs
30
  pixel_values = processor(image, return_tensors="pt").pixel_values
31
 
32
+ # prepare decoder inputs
33
  task_prompt = "<s_cord-v2>"
34
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
35
 
36
+ # generate answer
37
  outputs = model.generate(
38
  pixel_values.to(device),
39
  decoder_input_ids=decoder_input_ids.to(device),
 
47
  return_dict_in_generate=True,
48
  )
49
 
50
+ # postprocess
51
  sequence = processor.batch_decode(outputs.sequences)[0]
52
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
53
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
54
 
55
  end_time = time.time()
56
  processing_time = end_time - start_time
57
 
58
+ print(f"Inference done, worker PID: {worker_pid}")
59
 
60
+ return processor.token2json(sequence), processing_time