Spaces:
Sleeping
Sleeping
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +19 -26
routers/donut_inference.py
CHANGED
@@ -2,46 +2,38 @@ import re
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
|
|
|
5 |
import os
|
6 |
|
7 |
-
# Cache model and processor objects based on their path
|
8 |
-
_model_cache = {}
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
if
|
14 |
-
|
15 |
-
processor = DonutProcessor.from_pretrained(processor_path)
|
16 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
17 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
-
model.to(device)
|
19 |
-
_model_cache[key] = (processor, model, device)
|
20 |
-
else:
|
21 |
-
print(f"Using cached model: {model_path}")
|
22 |
|
23 |
-
return
|
24 |
|
25 |
|
26 |
-
def process_document_donut(image
|
27 |
-
processor_path = settings.processor
|
28 |
-
model_path = settings.model
|
29 |
-
|
30 |
worker_pid = os.getpid()
|
31 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
32 |
|
33 |
start_time = time.time()
|
34 |
|
35 |
-
processor, model, device = load_model(
|
36 |
|
37 |
-
#
|
38 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
39 |
|
40 |
-
#
|
41 |
task_prompt = "<s_cord-v2>"
|
42 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
43 |
|
44 |
-
#
|
45 |
outputs = model.generate(
|
46 |
pixel_values.to(device),
|
47 |
decoder_input_ids=decoder_input_ids.to(device),
|
@@ -55,13 +47,14 @@ def process_document_donut(image, settings):
|
|
55 |
return_dict_in_generate=True,
|
56 |
)
|
57 |
|
58 |
-
#
|
59 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
60 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
61 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
print(f"Inference done, worker PID: {worker_pid}")
|
66 |
|
67 |
-
return processor.token2json(sequence), processing_time
|
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
+
from config import settings
|
6 |
+
from functools import lru_cache
|
7 |
import os
|
8 |
|
|
|
|
|
9 |
|
10 |
+
@lru_cache(maxsize=1)
|
11 |
+
def load_model():
|
12 |
+
processor = DonutProcessor.from_pretrained(settings.processor)
|
13 |
+
model = VisionEncoderDecoderModel.from_pretrained(settings.model)
|
14 |
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
return processor, model, device
|
19 |
|
20 |
|
21 |
+
def process_document_donut(image):
|
|
|
|
|
|
|
22 |
worker_pid = os.getpid()
|
23 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
24 |
|
25 |
start_time = time.time()
|
26 |
|
27 |
+
processor, model, device = load_model()
|
28 |
|
29 |
+
# prepare encoder inputs
|
30 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
31 |
|
32 |
+
# prepare decoder inputs
|
33 |
task_prompt = "<s_cord-v2>"
|
34 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
35 |
|
36 |
+
# generate answer
|
37 |
outputs = model.generate(
|
38 |
pixel_values.to(device),
|
39 |
decoder_input_ids=decoder_input_ids.to(device),
|
|
|
47 |
return_dict_in_generate=True,
|
48 |
)
|
49 |
|
50 |
+
# postprocess
|
51 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
52 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
53 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
54 |
|
55 |
+
end_time = time.time()
|
56 |
+
processing_time = end_time - start_time
|
57 |
|
58 |
print(f"Inference done, worker PID: {worker_pid}")
|
59 |
|
60 |
+
return processor.token2json(sequence), processing_time
|