serenarolloh commited on
Commit
d2102d0
·
verified ·
1 Parent(s): d540d78

Update routers/donut_inference.py

Browse files
Files changed (1) hide show
  1. routers/donut_inference.py +19 -26
routers/donut_inference.py CHANGED
@@ -2,46 +2,38 @@ import re
2
  import time
3
  import torch
4
  from transformers import DonutProcessor, VisionEncoderDecoderModel
 
 
5
  import os
6
 
7
- # Cache model and processor objects based on their path
8
- _model_cache = {}
9
 
10
- def load_model(processor_path: str, model_path: str):
11
- key = (processor_path, model_path)
 
 
12
 
13
- if key not in _model_cache:
14
- print(f"Loading new model: {model_path}")
15
- processor = DonutProcessor.from_pretrained(processor_path)
16
- model = VisionEncoderDecoderModel.from_pretrained(model_path)
17
- device = "cuda" if torch.cuda.is_available() else "cpu"
18
- model.to(device)
19
- _model_cache[key] = (processor, model, device)
20
- else:
21
- print(f"Using cached model: {model_path}")
22
 
23
- return _model_cache[key]
24
 
25
 
26
- def process_document_donut(image, settings):
27
- processor_path = settings.processor
28
- model_path = settings.model
29
-
30
  worker_pid = os.getpid()
31
  print(f"Handling inference request with worker PID: {worker_pid}")
32
 
33
  start_time = time.time()
34
 
35
- processor, model, device = load_model(processor_path, model_path)
36
 
37
- # Prepare encoder inputs
38
  pixel_values = processor(image, return_tensors="pt").pixel_values
39
 
40
- # Prepare decoder inputs
41
  task_prompt = "<s_cord-v2>"
42
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
43
 
44
- # Generate output
45
  outputs = model.generate(
46
  pixel_values.to(device),
47
  decoder_input_ids=decoder_input_ids.to(device),
@@ -55,13 +47,14 @@ def process_document_donut(image, settings):
55
  return_dict_in_generate=True,
56
  )
57
 
58
- # Postprocess
59
  sequence = processor.batch_decode(outputs.sequences)[0]
60
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
61
- sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
62
 
63
- processing_time = time.time() - start_time
 
64
 
65
  print(f"Inference done, worker PID: {worker_pid}")
66
 
67
- return processor.token2json(sequence), processing_time
 
2
  import time
3
  import torch
4
  from transformers import DonutProcessor, VisionEncoderDecoderModel
5
+ from config import settings
6
+ from functools import lru_cache
7
  import os
8
 
 
 
9
 
10
+ @lru_cache(maxsize=1)
11
+ def load_model():
12
+ processor = DonutProcessor.from_pretrained(settings.processor)
13
+ model = VisionEncoderDecoderModel.from_pretrained(settings.model)
14
 
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ model.to(device)
 
 
 
 
 
 
 
17
 
18
+ return processor, model, device
19
 
20
 
21
+ def process_document_donut(image):
 
 
 
22
  worker_pid = os.getpid()
23
  print(f"Handling inference request with worker PID: {worker_pid}")
24
 
25
  start_time = time.time()
26
 
27
+ processor, model, device = load_model()
28
 
29
+ # prepare encoder inputs
30
  pixel_values = processor(image, return_tensors="pt").pixel_values
31
 
32
+ # prepare decoder inputs
33
  task_prompt = "<s_cord-v2>"
34
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
35
 
36
+ # generate answer
37
  outputs = model.generate(
38
  pixel_values.to(device),
39
  decoder_input_ids=decoder_input_ids.to(device),
 
47
  return_dict_in_generate=True,
48
  )
49
 
50
+ # postprocess
51
  sequence = processor.batch_decode(outputs.sequences)[0]
52
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
53
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
54
 
55
+ end_time = time.time()
56
+ processing_time = end_time - start_time
57
 
58
  print(f"Inference done, worker PID: {worker_pid}")
59
 
60
+ return processor.token2json(sequence), processing_time