Spaces:
Running
on
L4
Running
on
L4
File size: 5,647 Bytes
d6ff06e ca815e1 d6ff06e a09a58c d6ff06e ca815e1 d6ff06e a09a58c d6ff06e a09a58c d6ff06e a09a58c d6ff06e a09a58c d6ff06e a09a58c d6ff06e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import torch
#import spaces
import json
import base64
from io import BytesIO
from transformers import SamHQModel, SamHQProcessor, SamModel, SamProcessor
import os
import pandas as pd
from utils import *
from PIL import Image
from gradio_image_prompter import ImagePrompter
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
#@spaces.GPU
def predict_masks_and_scores(model, processor, raw_image, input_points=None, input_boxes=None):
if input_boxes is not None:
input_boxes = [input_boxes]
inputs = processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
)
scores = outputs.iou_scores
return masks, scores
def process_inputs(prompts):
raw_entries = prompts["points"]
input_points = []
input_boxes = []
for entry in raw_entries:
x1, y1, type_, x2, y2, cls = entry
if type_ == 1:
input_points.append([int(x1), int(y1)])
elif type_ == 2:
x_min = int(min(x1, x2))
y_min = int(min(y1, y2))
x_max = int(max(x1, x2))
y_max = int(max(y1, y2))
input_boxes.append([x_min, y_min, x_max, y_max])
input_boxes = [input_boxes] if input_boxes else None
input_points = [input_points] if input_points else None
user_image = prompts['image']
sam_masks, sam_scores = predict_masks_and_scores(sam_model, sam_processor, user_image, input_boxes=input_boxes, input_points=input_points)
sam_hq_masks, sam_hq_scores = predict_masks_and_scores(sam_hq_model, sam_hq_processor, user_image, input_boxes=input_boxes, input_points=input_points)
if input_boxes and input_points:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM_HQ')
elif input_boxes:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], None, model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], None, model_name='SAM_HQ')
elif input_points:
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], None, input_points[0], model_name='SAM')
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], None, input_points[0], model_name='SAM_HQ')
print('user_image', user_image)
print("img1_b64", img1_b64)
print("img2_b64", img2_b64)
html_code = f"""
<div style="position: relative; width: 100%; max-width: 600px; margin: 0 auto;" id="imageCompareContainer">
<div style="position: relative; width: 100%;">
<img src="data:image/png;base64,{img1_b64}" style="width:100%; display:block;">
<div id="topWrapper" style="position:absolute; top:0; left:0; width:100%; overflow:hidden;">
<img id="topImage" src="data:image/png;base64,{img2_b64}" style="width:100%;">
</div>
<div id="sliderLine" style="position:absolute; top:0; left:0; width:2px; height:100%; background-color:red; pointer-events:none;"></div>
</div>
<input type="range" min="0" max="100" value="0"
style="width:100%; margin-top: 10px;"
oninput="
const val = this.value;
const container = document.getElementById('imageCompareContainer');
const width = container.offsetWidth;
const clipValue = 100 - val;
document.getElementById('topImage').style.clipPath = 'inset(0 ' + clipValue + '% 0 0)';
document.getElementById('sliderLine').style.left = (width * val / 100) + 'px';
">
</div>
"""
return html_code
example_paths = [{"image": 'images/' + path} for path in os.listdir('images')]
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald")
with gr.Blocks(theme=theme, title="π Compare SAM vs SAM-HQ") as demo:
image_path_box = gr.Textbox(visible=False)
gr.Markdown("## π Compare SAM vs SAM-HQ")
gr.Markdown("Compare the performance of SAM and SAM-HQ on various images. Click on an example to load it")
gr.Markdown("[SAM-HQ](https://huggingface.co/syscv-community/sam-hq-vit-huge) - [SAM](https://huggingface.co/facebook/sam-vit-huge)")
print('example_paths', example_paths)
result_html = gr.HTML(elem_id="result-html")
gr.Interface(
fn=process_inputs,
#examples=example_paths,
inputs=ImagePrompter(show_label=False),
outputs=result_html,
)
gr.HTML("""
<style>
#result-html {
min-height: 500px;
border: 1px solid #ccc;
padding: 10px;
box-sizing: border-box;
background-color: #fff;
border-radius: 8px;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
}
</style>
""")
demo.launch()
|