Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
@@ -16,45 +16,32 @@ from utils import *
|
|
16 |
from PIL import Image
|
17 |
from gradio_image_prompter import ImagePrompter
|
18 |
|
19 |
-
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
|
20 |
-
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
|
21 |
-
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
|
22 |
-
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
23 |
|
24 |
-
#
|
25 |
-
#
|
26 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
|
27 |
-
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
28 |
|
29 |
@spaces.GPU
|
30 |
def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None):
|
31 |
-
if input_boxes is not None:
|
32 |
-
input_boxes = [input_boxes]
|
33 |
-
|
34 |
if model_id == 'sam':
|
35 |
-
|
|
|
36 |
else:
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
original_sizes = inputs["original_sizes"]
|
39 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
with torch.no_grad():
|
44 |
-
outputs = sam_model(**inputs)
|
45 |
-
else:
|
46 |
-
inputs = inputs.to(sam_hq_model.device)
|
47 |
-
with torch.no_grad():
|
48 |
-
outputs = sam_hq_model(**inputs)
|
49 |
|
50 |
-
|
51 |
-
masks = sam_processor.image_processor.post_process_masks(
|
52 |
-
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
53 |
-
)
|
54 |
-
else:
|
55 |
-
masks = sam_hq_processor.image_processor.post_process_masks(
|
56 |
-
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
57 |
-
)
|
58 |
scores = outputs.iou_scores
|
59 |
return masks, scores
|
60 |
|
|
|
16 |
from PIL import Image
|
17 |
from gradio_image_prompter import ImagePrompter
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
|
21 |
+
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
22 |
+
#sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
|
23 |
+
#sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
24 |
|
25 |
@spaces.GPU
|
26 |
def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None):
|
|
|
|
|
|
|
27 |
if model_id == 'sam':
|
28 |
+
model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda")
|
29 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
30 |
else:
|
31 |
+
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to("cuda")
|
32 |
+
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
33 |
+
|
34 |
+
inputs = processor(raw_image, input_boxes=[input_boxes] if input_boxes else None,
|
35 |
+
input_points=[input_points] if input_points else None, return_tensors="pt")
|
36 |
+
|
37 |
original_sizes = inputs["original_sizes"]
|
38 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
39 |
+
inputs = inputs.to("cuda")
|
40 |
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), original_sizes, reshaped_sizes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
scores = outputs.iou_scores
|
46 |
return masks, scores
|
47 |
|