File size: 1,714 Bytes
6644ffe
 
 
 
b053f3d
6644ffe
b053f3d
 
 
 
 
 
 
0a4ba60
6644ffe
b053f3d
 
 
0a4ba60
b053f3d
 
 
 
 
 
 
 
 
 
 
 
 
0a4ba60
 
 
 
 
 
 
 
 
 
 
 
 
 
b053f3d
 
0a4ba60
 
 
 
 
 
6644ffe
0a4ba60
 
6644ffe
0a4ba60
 
b053f3d
6644ffe
0a4ba60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
os.environ["HF_HOME"] = "/tmp/hf-home"

from fastapi import FastAPI, Request
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
from scipy.special import softmax
import numpy as np

app = FastAPI()

MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)

# Preprocessing step for Twitter-style input
def preprocess(text):
    tokens = []
    for t in text.split():
        if t.startswith("@") and len(t) > 1:
            t = "@user"
        elif t.startswith("http"):
            t = "http"
        tokens.append(t)
    return " ".join(tokens)

@app.post("/analyze")
async def analyze(request: Request):
    data = await request.json()
    raw_text = data.get("text", "")

    # Logging for debugging
    print(f"Raw input: {raw_text}")

    if not raw_text.strip():
        return {"error": "Empty input text."}

    text = preprocess(raw_text)
    print(f"Preprocessed: {text}")

    encoded_input = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    print(f"Encoded input: {encoded_input.input_ids}")

    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    probs = softmax(scores)

    # Logging output
    print(f"Raw scores: {scores}")
    print(f"Softmax probs: {probs}")

    result = [
        {"label": config.id2label[i], "score": round(float(probs[i]), 4)}
        for i in probs.argsort()[::-1]
    ]

    print(f"Result: {result}")
    return {"result": result}