shaheer-data's picture
Update app.py
ac847e4 verified
raw
history blame
3.67 kB
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array # Import this function
from PIL import Image
import numpy as np
import os
from huggingface_hub import hf_hub_download, login
# Title of the Streamlit app
st.title("Yellow Rust Severity Prediction")
# Authentication using Hugging Face token
authkey = os.getenv('YellowRust')
login(token=authkey)
# Download the model file from Hugging Face
model_path = hf_hub_download(repo_id="shaheer-data/Yellow-Rust-Prediction", filename="final_meta_model.keras")
# Load the pre-trained model
loaded_model = load_model(model_path)
# Function to preprocess the uploaded image
def preprocess_image(image):
# Resize the image to match the model input size (e.g., 224x224 for many pre-trained models)
image = image.resize((224, 224)) # Adjust size based on your model input
image = img_to_array(image) # Convert image to numpy array
image = image / 255.0 # Normalize pixel values to [0, 1]
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
# Streamlit file uploader
uploaded_file = st.sidebar.file_uploader("Upload a wheat leaf image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.sidebar.subheader("Uploaded Image")
image = Image.open(uploaded_file)
st.sidebar.image(image, caption="Uploaded Image", use_container_width=True)
# Preprocess the image
processed_image = preprocess_image(image)
st.subheader("Prediction: With 97% Accuracy")
# Perform prediction
with st.spinner("Predicting..."):
prediction = loaded_model.predict(processed_image)
predicted_class = np.argmax(prediction, axis=1)[0] # Get the class index
class_labels = ['0', 'MR', 'MRMS', 'MS', 'R', 'S'] # Update based on your classes
st.header("Predicted Severity Class")
if predicted_class == 0:
st.markdown('<p style="color: green; font-size: 20px;">Healthy</p>', unsafe_allow_html=True)
st.write("The leaf appears healthy. There is no immediate action required. Continue monitoring as needed.")
elif predicted_class == 1:
st.markdown('<p style="color: orange; font-size: 20px;">Mild Rust (MR)</p>', unsafe_allow_html=True)
st.write("Mild rust detected. Applying fungicides will help control further spread.")
elif predicted_class == 2:
st.markdown('<p style="color: #FFA500; font-size: 20px;">Moderate Rust (MRMS)</p>', unsafe_allow_html=True)
st.write("Moderate rust detected. Monitor regularly and treat with fungicides.")
elif predicted_class == 3:
st.markdown('<p style="color: #FF4500; font-size: 20px;">Severe Rust (MS)</p>', unsafe_allow_html=True)
st.write("Severe rust detected. Prompt fungicide application and continued monitoring are recommended.")
elif predicted_class == 4:
st.markdown('<p style="color: red; font-size: 20px;">Very Severe Rust (R)</p>', unsafe_allow_html=True)
st.write("Very severe rust detected. Intensive control measures and frequent monitoring are required.")
elif predicted_class == 5:
st.markdown('<p style="color: darkred; font-size: 20px;">Extremely Severe Rust (S)</p>', unsafe_allow_html=True)
st.write("Extremely severe rust detected. Apply aggressive control strategies and seek expert advice.")
confidence = np.max(prediction) * 100
st.write(f"**Confidence Level:** {confidence:.2f}%")
# Footer
st.info("MPHIL Final Year Project By Mr. Asim Khattak")