SDLCv2 / app.py
shaikhmohammedmujammil's picture
Correct Implement of Initial UI Inputs
cd9978f verified
# app.py
"""
Streamlit frontend application for orchestrating an AI-driven SDLC workflow.
This application manages the user interface, state transitions, and calls
backend logic functions defined in SDLC.py to generate project artifacts.
Includes cycle-based chat history display.
"""
# --- Standard Library Imports ---
import streamlit as st
import os
import shutil
import logging
from datetime import datetime
import time
import zipfile # Standard library zipfile
# --- Third-party Imports ---
import pydantic_core # For specific error checking
# --- Import core logic from SDLC.py ---
try:
import SDLC
from SDLC import (
# State and Models
MainState, GeneratedCode, PlantUMLCode, TestCase, CodeFile, TestCases,
# Initialization function
initialize_llm_clients,
# Workflow Functions (Import all necessary functions)
generate_questions, refine_prompt,
generate_initial_user_stories, generate_user_story_feedback, refine_user_stories, save_final_user_story,
generate_initial_product_review, generate_product_review_feedback, refine_product_review, save_final_product_review,
generate_initial_design_doc, generate_design_doc_feedback, refine_design_doc, save_final_design_doc,
select_uml_diagrams, generate_initial_uml_codes, generate_uml_feedback, refine_uml_codes, save_final_uml_diagrams,
generate_initial_code, web_search_code, generate_code_feedback, refine_code,
code_review, security_check, refine_code_with_reviews, save_review_security_outputs,
generate_initial_test_cases, generate_test_cases_feedback, refine_test_cases_and_code, save_testing_outputs,
generate_initial_quality_analysis, generate_quality_feedback, refine_quality_and_code, save_final_quality_analysis,
generate_initial_deployment, generate_deployment_feedback, refine_deployment, save_final_deployment_plan,
# Message Types
HumanMessage, AIMessage
)
logging.info("Successfully imported components from SDLC.py.")
except ImportError as e:
st.error(f"Import Error: {e}. Critical file 'SDLC.py' not found or contains errors.")
logging.critical(f"Failed to import SDLC.py: {e}", exc_info=True)
st.stop()
except Exception as e:
st.error(f"An unexpected error occurred during import from SDLC: {e}")
logging.critical(f"Unexpected error during import from SDLC: {e}", exc_info=True)
st.stop()
# --- Application Setup ---
st.set_page_config(layout="wide", page_title="AI SDLC Workflow")
logger = logging.getLogger(__name__)
# Ensure logger is configured
if not logger.handlers:
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger.info("Streamlit app logger configured.")
# --- Constants for Configuration ---
# Define available providers and their models
AVAILABLE_MODELS = {
"Google": [
"gemini-2.0-flash", "gemini-1.5-pro-latest", "gemini-1.5-flash-latest",
"gemini-1.0-pro", "gemini-1.0-flash", "gemini-2.5-pro-exp-03-25",
],
"OpenAI": [
"gpt-4o-mini", "gpt-4o-mini-2024-07-18",
"gpt-4o", "gpt-4o-2024-08-06",
"o1-mini", "o1-mini-2024-09-12",
"o3-mini", "o3-mini-2025-01-31",
],
"Groq": [
"llama3-8b-8192", "llama3-70b-8192", "llama-3.1-8b-instant",
"llama-3.2-1b-preview", "llama-3.2-3b-preview", "llama-3.3-70b-specdec",
"llama-3.3-70b-versatile", "mistral-saba-24b", "gemma2-9b-it",
"deepseek-r1-distill-llama-70b", "deepseek-r1-distill-qwen-32b",
"qwen-2.5-32b", "qwen-2.5-coder-32b", "qwen-qwq-32b",
"mixtral-8x7b-32768",
],
"Anthropic": [
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307",
"claude-3-5-haiku-latest",
"claude-3-5-sonnet-latest",
"claude-3-7-sonnet-latest"
],
"xAI": [
"grok-1",
"grok-2-latest",
"grok-3",
"grok-3-mini"
]
}
LLM_PROVIDERS = list(AVAILABLE_MODELS.keys())
# --- Define Cycle Order and Stage-to-Cycle Mapping ---
CYCLE_ORDER = [
"Requirements", "User Story", "Product Review", "Design", "UML",
"Code Generation", "Review & Security", "Testing", "Quality Analysis", "Deployment"
]
STAGE_TO_CYCLE = {
"initial_setup": "Requirements",
"run_generate_questions": "Requirements",
"collect_answers": "Requirements",
"run_refine_prompt": "Requirements",
"run_generate_initial_user_stories": "User Story",
"run_generate_user_story_feedback": "User Story",
"collect_user_story_human_feedback": "User Story",
"run_refine_user_stories": "User Story",
"collect_user_story_decision": "User Story",
"run_generate_initial_product_review": "Product Review",
"run_generate_product_review_feedback": "Product Review",
"collect_product_review_human_feedback": "Product Review",
"run_refine_product_review": "Product Review",
"collect_product_review_decision": "Product Review",
"run_generate_initial_design_doc": "Design",
"run_generate_design_doc_feedback": "Design",
"collect_design_doc_human_feedback": "Design",
"run_refine_design_doc": "Design",
"collect_design_doc_decision": "Design",
"run_select_uml_diagrams": "UML",
"run_generate_initial_uml_codes": "UML",
"run_generate_uml_feedback": "UML",
"collect_uml_human_feedback": "UML",
"run_refine_uml_codes": "UML",
"collect_uml_decision": "UML",
"run_generate_initial_code": "Code Generation",
"collect_code_human_input": "Code Generation",
"run_web_search_code": "Code Generation",
"run_generate_code_feedback": "Code Generation",
"collect_code_human_feedback": "Code Generation",
"run_refine_code": "Code Generation",
"collect_code_decision": "Code Generation",
"run_code_review": "Review & Security",
"run_security_check": "Review & Security",
"merge_review_security_feedback": "Review & Security", # Stage name from prompt
"collect_review_security_human_feedback": "Review & Security", # Hypothetical, check if needed
"run_refine_code_with_reviews": "Review & Security",
"collect_review_security_decision": "Review & Security",
"run_generate_initial_test_cases": "Testing",
"run_generate_test_cases_feedback": "Testing",
"collect_test_cases_human_feedback": "Testing",
"run_refine_test_cases_and_code": "Testing",
"run_save_testing_outputs": "Testing",
"run_generate_initial_quality_analysis": "Quality Analysis",
"run_generate_quality_feedback": "Quality Analysis",
"collect_quality_human_feedback": "Quality Analysis",
"run_refine_quality_and_code": "Quality Analysis",
"collect_quality_decision": "Quality Analysis",
"generate_initial_deployment": "Deployment", # Stage for form display
"run_generate_initial_deployment": "Deployment", # Stage for processing
"run_generate_deployment_feedback": "Deployment",
"collect_deployment_human_feedback": "Deployment",
"run_refine_deployment": "Deployment",
"collect_deployment_decision": "Deployment",
"END": "END" # Final stage marker
}
# --- Helper Functions ---
def initialize_state():
"""Initializes or resets the Streamlit session state."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
default_project_folder = f"ai_sdlc_project_{timestamp}"
# --- Existing Clear and Basic Init ---
st.session_state.clear() # Clear all session state keys
st.session_state.stage = "initial_setup"
st.session_state.workflow_state = {} # Master state dictionary
st.session_state.user_input = "" # Temporary storage for text area
st.session_state.display_content = "Welcome! Please configure API keys and project details to start." # Main display area content
st.session_state.project_folder_base = default_project_folder # Base folder name default
st.session_state.current_prefs = "" # For deployment preferences
# ZIP file paths for download buttons
st.session_state.zip_path = None # Full project zip
st.session_state.review_code_zip_path = None
st.session_state.testing_code_zip_path = None
st.session_state.final_code_zip_path = None
# Configuration state
st.session_state.config_applied = False
st.session_state.selected_provider = LLM_PROVIDERS[0]
st.session_state.selected_model = AVAILABLE_MODELS[LLM_PROVIDERS[0]][0]
st.session_state.llm_api_key = ""
st.session_state.tavily_api_key = ""
st.session_state.llm_instance = None
st.session_state.tavily_instance = None
# Chat history state for current cycle display
st.session_state.current_cycle_messages = [] # List to hold messages for display in the current cycle
st.session_state.previous_major_cycle = None # Track the previous cycle to detect changes
# --- >>> ADDED: Initialize Form Default Keys Directly Here <<< ---
# This ensures the keys exist when the initial setup form is rendered.
st.session_state.proj_name_default = "Multi-feature Web Application Example\n- User Authentication\n- Task Management\n- Reporting"
st.session_state.proj_cat_default = "Web Development\n- Full Stack"
st.session_state.proj_subcat_default = "Productivity Tool\n- Internal Business Application"
st.session_state.proj_lang_default = "Python (Flask Backend)\nJavaScript (React Frontend)\nDocker"
st.session_state.min_iter_default = 2
# --- >>> END ADDED BLOCK <<< ---
# --- Existing Initialization for MD/PDF Paths ---
st.session_state.refined_prompt_path = None
st.session_state.refined_prompt_pdf_path = None
st.session_state.final_user_story_path = None
st.session_state.final_user_story_pdf_path = None
st.session_state.final_product_review_path = None
st.session_state.final_product_review_pdf_path = None
st.session_state.final_design_document_path = None
st.session_state.final_design_document_pdf_path = None
st.session_state.final_quality_analysis_path = None
st.session_state.final_quality_analysis_pdf_path = None
st.session_state.final_deployment_path = None
st.session_state.final_deployment_pdf_path = None
# --- END ADDED --- # This comment was slightly misplaced, path init is correct
# --- Existing Initialization for Snapshot Paths ---
st.session_state.snapshot_path_codegen_initial = None
st.session_state.snapshot_path_codegen_refined = None
st.session_state.snapshot_path_review_refined = None
st.session_state.snapshot_path_testing_refined = None
st.session_state.snapshot_path_qa_polished = None
# Keep final folder paths (might point to last snapshot or dedicated folder)
st.session_state.review_code_snapshot_folder = None # Points to post_review snapshot
st.session_state.testing_passed_code_folder = None # Points to snapshot saved by save_testing_outputs
st.session_state.final_code_folder = None # Points to post_qa snapshot
# --- END ADDED/MODIFIED --- # This comment was slightly misplaced, path init is correct
logger.info("Streamlit session state initialized/reset including form defaults, PDF, and Snapshot paths.") # Keep the original log message or update if desired
def update_display(new_content: str):
"""Updates the main display area content in the session state."""
st.session_state.display_content = new_content
logger.debug("Main display content updated.")
def create_download_button(file_path: str, label: str, mime: str, key_suffix: str, help_text: str = ""):
"""Creates a download button for a given file path if it exists and is valid."""
if not file_path or not isinstance(file_path, str):
# logger.debug(f"Download button skipped for '{label}': Invalid path ({file_path}).")
return # Skip if path is invalid
abs_file_path = os.path.abspath(file_path)
if os.path.exists(abs_file_path) and os.path.isfile(abs_file_path):
try:
with open(abs_file_path, "rb") as fp:
# Sanitize label for key generation, keep it simple
safe_label_part = "".join(c for c in label if c.isalnum() or c in ['_']).lower()[:15]
button_key = f"dl_btn_{key_suffix}_{safe_label_part}" # Unique key per button
st.download_button(
label=f"Download {label}",
data=fp,
file_name=os.path.basename(abs_file_path),
mime=mime,
key=button_key,
help=help_text or f"Download the {label} file."
)
except FileNotFoundError:
# This shouldn't happen if os.path.exists passed, but handle defensively
logger.warning(f"File disappeared before download button creation: {abs_file_path}")
except Exception as e:
logger.error(f"Error preparing download button for '{abs_file_path}': {e}", exc_info=True)
# Show a less intrusive warning in the UI
st.warning(f"Could not create download for {label}. Error: {e}", icon="⚠️")
# else: logger.debug(f"Download button skipped for '{label}': File not found or not a file ({abs_file_path}).")
def create_zip_and_download_button(folder_path_key: str, zip_path_key: str, zip_basename: str, button_label_prefix: str, sidebar_context):
"""
Creates a button to generate a ZIP archive of a specified folder
and provides a download button for the generated ZIP file.
Args:
folder_path_key: Key in workflow_state holding the path to the folder to zip.
zip_path_key: Key in session_state where the path to the created zip file will be stored.
zip_basename: The base name for the output zip file (without .zip).
button_label_prefix: Prefix for the button labels (e.g., "Review Stage Code").
sidebar_context: The Streamlit container (e.g., st.sidebar) where buttons are placed.
"""
folder_path = st.session_state.workflow_state.get(folder_path_key)
abs_folder_path = os.path.abspath(folder_path) if folder_path and isinstance(folder_path, str) else None
if abs_folder_path and os.path.exists(abs_folder_path) and os.path.isdir(abs_folder_path):
# --- Button to Generate ZIP ---
zip_label = f"Generate & Download {button_label_prefix} ZIP"
existing_zip = st.session_state.get(zip_path_key)
if existing_zip and os.path.exists(existing_zip):
zip_label = f"Download {button_label_prefix} ZIP" # Change label if ZIP exists
# Use a descriptive and unique key for the generation button
zip_gen_key = f"zip_gen_btn_{zip_path_key}"
if sidebar_context.button(zip_label, key=zip_gen_key, help=f"Package the {button_label_prefix} folder into a downloadable ZIP file."):
with st.spinner(f"Creating {button_label_prefix} archive..."):
try:
# Define output directory (same level as project folder) and base name
out_dir = os.path.dirname(abs_folder_path) # Place zip next to the folder being zipped
archive_base = os.path.join(out_dir, zip_basename) # e.g., ../ai_sdlc_project_xxx/code_snapshot_review
# Define the root directory and the directory to archive relative to the root
root_dir = os.path.dirname(abs_folder_path) # The parent directory of the folder to zip
base_dir = os.path.basename(abs_folder_path) # The name of the folder to zip
logger.info(f"Zipping: base_name='{archive_base}', format='zip', root_dir='{root_dir}', base_dir='{base_dir}'")
# Construct the expected output zip file path
zip_file_path = archive_base + ".zip"
# Remove old zip file if it exists to avoid conflicts
if os.path.exists(zip_file_path):
try:
os.remove(zip_file_path)
logger.info(f"Removed existing ZIP: {zip_file_path}")
except Exception as del_e:
logger.warning(f"Could not remove existing ZIP {zip_file_path}: {del_e}")
# Create the archive
archive_path = shutil.make_archive(
base_name=archive_base,
format='zip',
root_dir=root_dir,
base_dir=base_dir
)
# Verify the archive was created
if not os.path.exists(archive_path):
raise OSError(f"ZIP archive creation failed: File not found at {archive_path}")
# Store the path to the created zip file in session state
st.session_state[zip_path_key] = archive_path
st.success(f"{button_label_prefix} ZIP created successfully!")
logger.info(f"Successfully created ZIP archive: {archive_path}")
st.rerun() # Rerun to update the UI and show the download button
except Exception as e:
sidebar_context.error(f"ZIP Creation Error: {e}")
logger.error(f"ZIP creation failed for folder '{abs_folder_path}': {e}", exc_info=True)
# --- Download Button for Existing ZIP ---
generated_zip = st.session_state.get(zip_path_key)
if generated_zip and os.path.exists(generated_zip):
try:
with open(generated_zip, "rb") as fp:
# Use a descriptive and unique key for the download button
safe_prefix = "".join(c for c in button_label_prefix if c.isalnum()).lower()[:10]
dl_key = f"dl_zip_btn_{zip_path_key}_{safe_prefix}"
sidebar_context.download_button(
label=f"Download {button_label_prefix} ZIP",
data=fp,
file_name=os.path.basename(generated_zip),
mime="application/zip",
key=dl_key,
help=f"Download the generated {button_label_prefix} ZIP archive."
)
except Exception as e:
sidebar_context.warning(f"Error reading ZIP file for download: {e}")
logger.error(f"Error reading ZIP file {generated_zip} for download: {e}", exc_info=True)
# else: logger.debug(f"ZIP button skipped for '{button_label_prefix}': Folder path invalid or not found ({folder_path}).")
# --- Initialize State if First Run ---
if 'stage' not in st.session_state:
initialize_state()
# --- Sidebar UI ---
with st.sidebar:
st.header("AI SDLC Orchestrator")
st.caption("Automated workflow from requirements to deployment.")
st.divider()
# --- Configuration Expander ---
with st.expander("Configuration", expanded=not st.session_state.get('config_applied', False)):
st.subheader("LLM & API Keys")
# LLM Provider Selection
selected_provider = st.selectbox(
"Select LLM Provider",
options=LLM_PROVIDERS,
key="selected_provider", # Keep existing key for state consistency
index=LLM_PROVIDERS.index(st.session_state.selected_provider) if st.session_state.selected_provider in LLM_PROVIDERS else 0,
help="Choose the primary Large Language Model provider."
)
# Dynamically update available models based on provider
available_models = AVAILABLE_MODELS.get(selected_provider, ["N/A"])
current_model_selection = st.session_state.selected_model
model_index = available_models.index(current_model_selection) if current_model_selection in available_models else 0
selected_model = st.selectbox(
f"Select Model ({selected_provider})",
options=available_models,
key="selected_model", # Keep existing key
index=model_index,
help=f"Choose a specific model from {selected_provider}."
)
# API Key Inputs
llm_api_key_input = st.text_input(
f"{selected_provider} API Key",
type="password",
key="llm_api_key_input", # Keep existing key
help=f"Enter your API key for the selected {selected_provider} provider.",
value=st.session_state.get("llm_api_key", "") # Pre-fill if exists
)
tavily_api_key_input = st.text_input(
"Tavily API Key (Optional)",
type="password",
key="tavily_api_key_input", # Keep existing key
help="Enter your Tavily API key for enabling web search functionality.",
value=st.session_state.get("tavily_api_key", "") # Pre-fill if exists
)
# Apply Configuration Button
if st.button("Apply Configuration", key="apply_config_button"): # Changed key slightly to avoid potential conflicts if previous runs errored strangely
with st.spinner("Initializing LLM and Tavily clients..."):
# Store keys from inputs into session state
st.session_state.llm_api_key = llm_api_key_input
st.session_state.tavily_api_key = tavily_api_key_input
# Attempt to initialize clients using the backend function
llm_inst, tav_inst, error_msg = SDLC.initialize_llm_clients(
provider=st.session_state.selected_provider,
model_name=st.session_state.selected_model,
llm_api_key=st.session_state.llm_api_key,
tavily_api_key=st.session_state.tavily_api_key
)
# Update state based on initialization result
if llm_inst:
st.session_state.llm_instance = llm_inst
st.session_state.tavily_instance = tav_inst
st.session_state.config_applied = True
st.success("Configuration applied successfully!")
logger.info(f"LLM ({selected_provider}/{selected_model}) and Tavily clients configured via UI.")
time.sleep(1) # Brief pause for user to see success message
st.rerun() # Rerun to potentially collapse expander and enable main workflow
else:
st.session_state.config_applied = False
st.session_state.llm_instance = None
st.session_state.tavily_instance = None
error_display = f"Configuration Failed: {error_msg or 'An unknown error occurred.'}"
st.error(error_display)
logger.error(error_display)
st.divider()
# --- Downloads Section ---
st.header("Downloads")
st.caption("Access generated artifacts and code snapshots.")
# --- MODIFIED: Document Downloads (MD and PDF) ---
st.markdown("---")
st.subheader("Documents") # Combined header
# Refined Prompt (Appears after Q&A cycle is complete)
st.markdown("**Requirements Cycle:**") # Header for this artifact
create_download_button(st.session_state.workflow_state.get("refined_prompt_path"), "Refined Prompt (MD)", "text/markdown", "refined_prompt_md", help_text="The final prompt generated after Q&A.")
create_download_button(st.session_state.workflow_state.get("refined_prompt_pdf_path"), "Refined Prompt (PDF)", "application/pdf", "refined_prompt_pdf", help_text="PDF version of the refined prompt.")
st.markdown("---") # Separator
# User Story
st.markdown("**User Story Cycle:**")
create_download_button(st.session_state.workflow_state.get("final_user_story_path"), "User Story (MD)", "text/markdown", "final_us_md")
create_download_button(st.session_state.workflow_state.get("final_user_story_pdf_path"), "User Story (PDF)", "application/pdf", "final_us_pdf")
st.markdown("---")
# Product Review
st.markdown("**Product Review Cycle:**")
create_download_button(st.session_state.workflow_state.get("final_product_review_path"), "Product Review (MD)", "text/markdown", "final_pr_md")
create_download_button(st.session_state.workflow_state.get("final_product_review_pdf_path"), "Product Review (PDF)", "application/pdf", "final_pr_pdf")
st.markdown("---")
# Design Document
st.markdown("**Design Cycle:**")
create_download_button(st.session_state.workflow_state.get("final_design_document_path"), "Design Document (MD)", "text/markdown", "final_dd_md")
create_download_button(st.session_state.workflow_state.get("final_design_document_pdf_path"), "Design Document (PDF)", "application/pdf", "final_dd_pdf")
st.markdown("---")
# QA Report
st.markdown("**Quality Analysis Cycle:**")
create_download_button(st.session_state.workflow_state.get("final_quality_analysis_path"), "QA Report (MD)", "text/markdown", "final_qa_md")
create_download_button(st.session_state.workflow_state.get("final_quality_analysis_pdf_path"), "QA Report (PDF)", "application/pdf", "final_qa_pdf")
st.markdown("---")
# Deployment Plan
st.markdown("**Deployment Cycle:**")
create_download_button(st.session_state.workflow_state.get("final_deployment_path"), "Deployment Plan (MD)", "text/markdown", "final_deploy_md")
create_download_button(st.session_state.workflow_state.get("final_deployment_pdf_path"), "Deployment Plan (PDF)", "application/pdf", "final_deploy_pdf")
# --- END MODIFIED Document Downloads ---
# UML Diagram Downloads
st.markdown("---")
st.subheader("UML Diagrams")
uml_png_paths = st.session_state.workflow_state.get("final_uml_png_paths", [])
uml_folder = st.session_state.workflow_state.get("final_uml_diagram_folder")
if uml_png_paths:
st.caption("Download generated PNG images:")
# Create download buttons for each generated PNG
for i, png_path in enumerate(uml_png_paths):
# Attempt to create a meaningful label from the filename
try:
base_name = os.path.basename(png_path)
# Assumes format like 'diagram_01_class_diagram.png'
label_parts = base_name.split('_')[2:] # Get parts after 'diagram_xx_'
label = ' '.join(label_parts).replace('.png', '').replace('_', ' ').title()
if not label: label = f"Diagram {i+1}" # Fallback label
except Exception:
label = f"Diagram {i+1}" # Generic fallback
create_download_button(png_path, f"UML: {label}", "image/png", f"uml_png_{i}")
elif uml_folder and os.path.exists(uml_folder):
# Indicates UML stage ran but PNGs weren't generated or found
st.caption("*No PNG diagrams available for download (check PlantUML setup/server). Puml files might be available in the full project ZIP.*")
else:
# Indicates UML stage hasn't run or failed before saving
st.caption("*UML diagrams have not been generated yet.*")
# --- MODIFIED: Code Snapshot Downloads (ZIP) ---
st.markdown("---")
st.subheader("Code Snapshots (ZIP)")
st.caption("Download code versions from various stages.")
# Code Generation Cycle Snapshots
st.markdown("**Code Generation Cycle:**")
create_zip_and_download_button(
folder_path_key="snapshot_path_codegen_initial", # Use the new state key
zip_path_key="zip_path_cg_initial", # Unique key for session state zip path
zip_basename="snapshot_codegen_initial",
button_label_prefix="Initial Code",
sidebar_context=st.sidebar
)
create_zip_and_download_button(
folder_path_key="snapshot_path_codegen_refined", # Use the new state key
zip_path_key="zip_path_cg_refined", # Unique key
zip_basename="snapshot_codegen_refined",
button_label_prefix="Refined Code (Latest)", # Label indicates latest
sidebar_context=st.sidebar
)
st.markdown("---")
# Review & Security Cycle Snapshot
st.markdown("**Review & Security Cycle:**")
create_zip_and_download_button(
folder_path_key="snapshot_path_review_refined", # Use the new state key
zip_path_key="zip_path_review_refined", # Unique key
zip_basename="snapshot_review_refined",
button_label_prefix="Post-Review Code",
sidebar_context=st.sidebar
)
st.markdown("---")
# Testing Cycle Snapshots
st.markdown("**Testing Cycle:**")
create_zip_and_download_button(
folder_path_key="snapshot_path_testing_refined", # Use the new state key for failed refinement
zip_path_key="zip_path_testing_refined", # Unique key
zip_basename="snapshot_testing_refined",
button_label_prefix="Post-Failure Refined Code (Latest)",
sidebar_context=st.sidebar
)
create_zip_and_download_button(
folder_path_key="testing_passed_code_folder", # Keep the one saved on PASS
zip_path_key="zip_path_testing_passed", # Unique key
zip_basename="snapshot_testing_passed",
button_label_prefix="Passed Testing Code",
sidebar_context=st.sidebar
)
st.markdown("---")
# Quality Analysis Cycle Snapshot (Final Code)
st.markdown("**Quality Analysis Cycle:**")
create_zip_and_download_button(
folder_path_key="snapshot_path_qa_polished", # Use the new state key (points to final code)
zip_path_key="zip_path_qa_polished", # Unique key
zip_basename="snapshot_qa_polished_final",
button_label_prefix="Final Polished Code",
sidebar_context=st.sidebar
)
# --- END MODIFIED Code Snapshots ---
st.divider()
# --- Full Project ZIP (only appears at the end) ---
if st.session_state.stage == "END":
st.markdown("**Full Project Archive**")
st.caption("Download all generated artifacts and code snapshots in a single ZIP.")
proj_folder = st.session_state.workflow_state.get("project_folder")
abs_proj = os.path.abspath(proj_folder) if proj_folder and isinstance(proj_folder, str) else None
if abs_proj and os.path.isdir(abs_proj):
zip_label = "Generate & Download Full Project ZIP"
if st.session_state.get("zip_path") and os.path.exists(st.session_state.zip_path):
zip_label = "Download Full Project ZIP" # Change label if already generated
if st.sidebar.button(zip_label, key="zip_gen_final_project_btn"): # Unique key
with st.spinner("Creating full project archive..."):
try:
# Use the project_folder_base which is set at init and guaranteed unique
zip_base = os.path.abspath(st.session_state.project_folder_base)
out_dir = os.path.dirname(zip_base) # Place zip in parent dir
os.makedirs(out_dir, exist_ok=True)
root_dir = os.path.dirname(abs_proj) # Parent of the project folder
base_dir = os.path.basename(abs_proj) # Name of the project folder
logger.info(f"Zipping full project: base_name='{zip_base}', format='zip', root_dir='{root_dir}', base_dir='{base_dir}'")
zip_file_path = zip_base + ".zip"
# Remove old zip if exists
if os.path.exists(zip_file_path):
try:
os.remove(zip_file_path)
logger.info(f"Removed old final project ZIP: {zip_file_path}")
except Exception as del_e:
logger.warning(f"Could not remove old final project ZIP {zip_file_path}: {del_e}")
# Create the archive
archive_path = shutil.make_archive(
base_name=zip_base,
format='zip',
root_dir=root_dir,
base_dir=base_dir
)
# Verify creation
if not os.path.exists(archive_path):
raise OSError(f"Final project ZIP creation failed: File not found at {archive_path}")
st.session_state.zip_path = archive_path # Store path
st.success(f"Full project ZIP created: {os.path.basename(archive_path)}")
st.rerun() # Update UI
except Exception as e:
st.sidebar.error(f"Final Project ZIP Error: {e}")
logger.error(f"Final project ZIP creation failed: {e}", exc_info=True)
# Provide download button if zip exists
if st.session_state.get("zip_path") and os.path.exists(st.session_state.zip_path):
try:
with open(st.session_state.zip_path, "rb") as fp:
st.sidebar.download_button(
label="Download Full Project ZIP",
data=fp,
file_name=os.path.basename(st.session_state.zip_path),
mime="application/zip",
key="dl_zip_final_project_btn" # Unique key
)
except Exception as read_e:
st.sidebar.warning(f"Error reading final project ZIP: {read_e}")
logger.error(f"Error reading final project ZIP {st.session_state.zip_path}: {read_e}", exc_info=True)
elif proj_folder:
st.sidebar.warning(f"Project folder '{proj_folder}' not found for final ZIP.")
else:
st.sidebar.caption("*Project folder not yet defined.*")
st.divider()
# --- Restart Button ---
if st.sidebar.button("Restart Workflow", key="restart_workflow_button", help="Clear all progress and configuration, then start over."):
# Optional: Add confirmation dialog here if desired
logger.info("Workflow restart requested by user.")
# Clean up project directory if it exists
proj_folder_to_delete = st.session_state.workflow_state.get("project_folder")
if proj_folder_to_delete and os.path.isdir(proj_folder_to_delete):
try:
shutil.rmtree(proj_folder_to_delete)
logger.info(f"Removed project folder on restart: {proj_folder_to_delete}")
except Exception as e:
logger.warning(f"Could not remove project folder '{proj_folder_to_delete}' on restart: {e}")
initialize_state()
st.rerun()
# ==============================================================================
# --- Main Layout Area ---
# ==============================================================================
main_col, indicator_col = st.columns([4, 1]) # Main content area, Cycle indicator sidebar
# --- Cycle Change Detection and History Reset ---
current_stage = st.session_state.stage
current_major_cycle = STAGE_TO_CYCLE.get(current_stage, "Unknown")
# Initialize previous cycle tracker if it doesn't exist
if 'previous_major_cycle' not in st.session_state:
st.session_state.previous_major_cycle = current_major_cycle
# Check if the cycle has changed since the last run
if st.session_state.previous_major_cycle != current_major_cycle and current_major_cycle != "Unknown":
logger.info(f"Detected cycle change: '{st.session_state.previous_major_cycle}' -> '{current_major_cycle}'. Clearing current cycle message display.")
st.session_state.current_cycle_messages = [] # Reset the list for the new cycle
st.session_state.previous_major_cycle = current_major_cycle # Update the tracker
# --- Main Column Content ---
with main_col:
# Display current stage and cycle title
stage_display_name = current_stage.replace('_', ' ').title()
if current_stage == "END":
st.header("🏁 Workflow Complete")
else:
st.header(f"Cycle: {current_major_cycle} | Stage: {stage_display_name}")
# --- Chat History Display Area (Current Cycle Only) ---
st.markdown("### Current Cycle Interaction History")
# Get the messages specifically for the current cycle display
current_cycle_messages_list = st.session_state.get("current_cycle_messages", [])
# Use a container with fixed height for scrollable chat
chat_container = st.container(height=350, border=True)
with chat_container:
if not current_cycle_messages_list:
st.caption("No interactions recorded for this cycle yet.")
else:
# Iterate through messages stored for the current cycle display
for msg in current_cycle_messages_list:
# Determine role based on message type
if isinstance(msg, AIMessage):
role = "assistant"
avatar = "🤖"
elif isinstance(msg, HumanMessage):
role = "user"
avatar = "🧑‍💻"
else:
role = "system" # Or handle other types if necessary
avatar = "⚙️"
with st.chat_message(role, avatar=avatar):
# Display message content using markdown
# Ensure content is string; handle potential non-string data safely
content_display = str(msg.content) if msg.content is not None else "[No Content]"
st.markdown(content_display, unsafe_allow_html=False) # Security best practice
st.divider() # Visual separator
# --- Current Task / Output Display ---
st.markdown("### Current Task / Latest Output:")
display_area = st.container(border=True) # Add border for visual separation
with display_area:
# Get content safely, default to a clear message
display_content_md = st.session_state.get("display_content", "Awaiting next step...")
# Ensure it's a string before displaying
if not isinstance(display_content_md, str):
display_content_md = str(display_content_md)
st.markdown(display_content_md, unsafe_allow_html=False) # Disable HTML rendering
st.divider() # Visual separator
# --- Input / Decision Widgets ---
# Only show workflow UI elements if configuration is applied
if not st.session_state.get('config_applied', False):
if st.session_state.stage != "initial_setup": # Don't show warning during initial setup itself
st.warning("👈 Please apply LLM & API Key configuration in the sidebar to start the workflow.")
else:
# Determine which UI elements to show based on the current stage
current_stage_ui = st.session_state.stage # Use a distinct variable for clarity
input_needed_stages = {
"collect_answers", "collect_user_story_human_feedback",
"collect_product_review_human_feedback", "collect_design_doc_human_feedback",
"collect_uml_human_feedback", "collect_code_human_input",
"collect_code_human_feedback", "merge_review_security_feedback", # This stage now collects feedback
"collect_quality_human_feedback", "collect_deployment_human_feedback"
}
decision_needed_stages = {
"collect_user_story_decision", "collect_product_review_decision",
"collect_design_doc_decision", "collect_uml_decision", "collect_code_decision",
"collect_review_security_decision", "collect_quality_decision",
"collect_deployment_decision"
}
show_initial_setup_form = (current_stage_ui == "initial_setup")
show_deployment_prefs_form = (current_stage_ui == "generate_initial_deployment")
show_input_box = current_stage_ui in input_needed_stages
show_test_feedback_area = (current_stage_ui == "collect_test_cases_human_feedback")
show_decision_buttons = current_stage_ui in decision_needed_stages
# --- Initial Setup Form ---
if show_initial_setup_form:
with st.form("initial_project_setup_form"): # Descriptive key
st.markdown("### Project Configuration")
st.info("Define the initial parameters for your software project.")
# --- Project Folder (Standard Input) ---
proj_folder = st.text_input(
"Project Folder Name",
value=st.session_state.project_folder_base,
key="proj_folder_input",
help="Directory name for saved outputs. Use valid filesystem characters (no spaces/special chars like /\\:*?\"<>| recommended)."
)
# --- Project Description (Text Area with Height) ---
proj_name = st.text_area( # MODIFIED: Use text_area
"Project Description",
value=st.session_state.proj_name_default, # Use a potentially multi-line default
key="proj_name_input",
height=300, # MODIFIED: Set height
help="A detailed description of the project's purpose, features, and goals."
)
# --- Category (Text Area with Height) ---
proj_cat = st.text_area( # MODIFIED: Use text_area
"Category",
value=st.session_state.proj_cat_default, # Use a potentially multi-line default
key="proj_cat_input",
height=150, # MODIFIED: Set height
help="Broad category (e.g., Web Development, Data Science). Can be multi-line if needed."
)
# --- Subcategory (Text Area with Height) ---
proj_subcat = st.text_area( # MODIFIED: Use text_area
"Subcategory",
value=st.session_state.proj_subcat_default, # Use a potentially multi-line default
key="proj_subcat_input",
height=150, # MODIFIED: Set height
help="More specific classification (e.g., API, Full-Stack App). Can be multi-line."
)
# --- Coding Language (Text Area with Height) ---
proj_lang = st.text_area( # MODIFIED: Use text_area
"Coding Language(s) / Tech Stack",
value=st.session_state.proj_lang_default, # Use a potentially multi-line default
key="proj_lang_input",
height=150, # MODIFIED: Set height
help="Primary language(s) and key technologies (e.g., Python, React, Docker). Can be multi-line."
)
# --- Min Iterations (Standard Number Input) ---
min_iter = st.number_input(
"Min Q&A Rounds",
min_value=1, max_value=10, # Increased max slightly
value=st.session_state.min_iter_default,
key="min_iter_input",
help="Minimum required rounds of questions and answers for requirements gathering."
)
# --- Submit Button ---
submitted = st.form_submit_button("Start Workflow")
# --- Post-Submission Logic (Your existing code) ---
if submitted:
# Validation checks
error_messages = []
# Trim whitespace from inputs before validation
proj_folder = proj_folder.strip()
proj_name = proj_name.strip()
proj_cat = proj_cat.strip()
proj_subcat = proj_subcat.strip()
proj_lang = proj_lang.strip()
if not all([proj_folder, proj_name, proj_cat, proj_subcat, proj_lang]):
error_messages.append("Please fill all configuration fields.")
# Basic check for invalid characters, can be expanded
invalid_chars = ['/', '\\', ':', '*', '?', '"', '<', '>', '|']
if any(c in proj_folder for c in invalid_chars) or ' ' in proj_folder:
error_messages.append("Project Folder Name should not contain spaces or special characters like /\\:*?\"<>|.")
if error_messages:
for msg in error_messages: st.error(msg)
else:
try:
# Prepare absolute path and check filesystem status
abs_proj_folder = os.path.abspath(proj_folder)
if os.path.exists(abs_proj_folder) and not os.path.isdir(abs_proj_folder):
st.error(f"Error: A file (not a folder) already exists with the name '{proj_folder}'. Please choose a different name.")
else:
# Create folder if it doesn't exist, warn if it does
if os.path.exists(abs_proj_folder):
st.warning(f"Warning: Project folder '{abs_proj_folder}' already exists. Files within might be overwritten during the workflow.")
else:
os.makedirs(abs_proj_folder, exist_ok=True)
st.success(f"Project folder created/confirmed: '{abs_proj_folder}'")
logger.info(f"Project folder ready: {abs_proj_folder}")
# --- Initialize workflow_state ---
# Use the (potentially multi-line) inputs directly
initial_human_message_content = f"Initial Setup:\n- Project: {proj_name}\n- Category: {proj_cat}/{proj_subcat}\n- Language: {proj_lang}\n- Min Q&A Rounds: {min_iter}"
initial_human_message = SDLC.HumanMessage(content=initial_human_message_content)
# Build the initial state dictionary carefully
initial_workflow_state = {
# Core instances (must be present if config applied)
"llm_instance": st.session_state.llm_instance,
"tavily_instance": st.session_state.tavily_instance,
# Communication history starts with the setup message
"messages": [initial_human_message],
# Project Configuration (using validated/stripped values)
"project_folder": proj_folder,
"project": proj_name,
"category": proj_cat,
"subcategory": proj_subcat,
"coding_language": proj_lang,
# Requirements Gathering State
"user_input_iteration": 0,
"user_input_min_iterations": min_iter,
"user_input_questions": [],
"user_input_answers": [],
"user_input_done": False,
"user_query_with_qa": "", # Will be built later
"refined_prompt": "",
# Initialize cycle states (using defaults where appropriate)
"user_story_current": "", "user_story_feedback": "", "user_story_human_feedback": "", "user_story_done": False,
"product_review_current": "", "product_review_feedback": "", "product_review_human_feedback": "", "product_review_done": False,
"design_doc_current": "", "design_doc_feedback": "", "design_doc_human_feedback": "", "design_doc_done": False,
"uml_selected_diagrams": [], "uml_current_codes": [], "uml_feedback": {}, "uml_human_feedback": {}, "uml_done": False,
# Use a valid default GeneratedCode object with placeholder instructions meeting min_length
"code_current": SDLC.GeneratedCode(files=[], instructions="[Placeholder - Code not generated yet.]"),
"code_human_input": "", "code_web_search_results": "", "code_feedback": "", "code_human_feedback": "", "code_done": False,
"code_review_current_feedback": "", "security_current_feedback": "", "review_security_human_feedback": "", "review_security_done": False,
"test_cases_current": [], "test_cases_feedback": "", "test_cases_human_feedback": "", "test_cases_passed": False,
"quality_current_analysis": "", "quality_feedback": "", "quality_human_feedback": "", "quality_done": False,
"deployment_current_process": "", "deployment_feedback": "", "deployment_human_feedback": "", "deployment_done": False,
# Final artifact storage (initialize as None or empty)
"final_user_story": "", "final_product_review": "", "final_design_document": "",
"final_uml_codes": [], "final_code_files": [], "final_code_review": "",
"final_security_issues": "", "final_test_code_files": [], "final_quality_analysis": "",
"final_deployment_process": "",
# --- ADDED/MODIFIED: Initialize MD/PDF paths ---
"refined_prompt_path": None,
"refined_prompt_pdf_path": None,
"final_user_story_path": None,
"final_user_story_pdf_path": None,
"final_product_review_path": None,
"final_product_review_pdf_path": None,
"final_design_document_path": None,
"final_design_document_pdf_path": None,
"final_uml_diagram_folder": None,
"final_uml_png_paths": [],
"final_review_security_folder": None,
"review_code_snapshot_folder": None,
"final_testing_folder": None,
"testing_passed_code_folder": None,
"final_quality_analysis_path": None, # MD path
"final_quality_analysis_pdf_path": None, # PDF path
"final_code_folder": None,
"final_deployment_path": None, # MD path
"final_deployment_pdf_path": None, # PDF path
# --- END ADDED/MODIFIED ---
# Intermediate Snapshot Paths
"snapshot_path_codegen_initial": None,
"snapshot_path_codegen_refined": None,
"snapshot_path_review_refined": None,
"snapshot_path_testing_refined": None,
"snapshot_path_qa_polished": None,
}
# Update the main session state variables
st.session_state.workflow_state = initial_workflow_state
st.session_state.project_folder_base = proj_folder # Update base if user changed it
st.session_state.stage = "run_generate_questions" # Move to the first processing stage
# Add the initial setup message to the current cycle display list
st.session_state.current_cycle_messages.append(initial_human_message)
# Ensure previous_major_cycle is set for the first cycle
if st.session_state.previous_major_cycle is None:
st.session_state.previous_major_cycle = STAGE_TO_CYCLE.get("initial_setup", "Requirements")
logger.info(f"Initial setup complete. Starting workflow for project '{proj_name}'.")
st.rerun() # Rerun to start the workflow execution
except OSError as oe:
st.error(f"Filesystem Error creating folder '{proj_folder}': {oe}. Check permissions or choose a different name.")
logger.error(f"OSError during initial setup folder creation: {oe}", exc_info=True)
except Exception as e:
st.error(f"An unexpected error occurred during setup: {e}")
logger.error(f"Unexpected error during initial setup: {e}", exc_info=True)
# --- Deployment Preferences Form ---
elif show_deployment_prefs_form:
with st.form("deployment_preferences_form"): # Descriptive key
st.markdown("### Deployment Preferences")
st.info("Specify your desired deployment target and any relevant details.")
# Common deployment targets
deploy_target = st.selectbox(
"Target Environment",
options=["Localhost (using Docker)", "Docker (generic)", "AWS EC2", "AWS ECS/Fargate", "AWS Lambda", "Google Cloud Run", "Google Kubernetes Engine (GKE)", "Azure App Service", "Azure Kubernetes Service (AKS)", "Other Cloud VM", "Other Serverless", "Other Container Orchestrator"],
key="deploy_target_select",
help="Choose the primary target environment for deployment."
)
deploy_details = st.text_area(
"Additional Details / Constraints:",
height=100,
key="deploy_details_input",
placeholder="e.g., Specific AWS region (us-east-1), use Nginx as reverse proxy, database connection string source, required OS, any existing infrastructure to leverage.",
help="Provide any specific requirements, configurations, or constraints for the deployment."
)
submitted = st.form_submit_button("Generate Deployment Plan")
if submitted:
# Combine preferences into a string for the backend
prefs = f"Target Environment: {deploy_target}\nAdditional Details: {deploy_details}"
st.session_state.current_prefs = prefs # Store for potential use/display later
st.session_state.stage = "run_generate_initial_deployment" # Move to the processing stage
logger.info(f"Deployment preferences collected: Target='{deploy_target}'")
# Add human message for context
deploy_prefs_message = SDLC.HumanMessage(content=f"Deployment Preferences Set:\n{prefs}")
st.session_state.workflow_state["messages"].append(deploy_prefs_message)
st.session_state.current_cycle_messages.append(deploy_prefs_message)
st.rerun()
# --- General Input/Feedback Text Area ---
elif show_input_box:
input_label = "Your Input / Feedback:"
input_help = "Provide your answers or feedback here. For Q&A, type '#DONE' on a new line when finished with the current round."
# Customize label/help based on stage if needed
if current_stage_ui == "collect_answers":
input_label = "Your Answers:"
elif current_stage_ui == "collect_code_human_input":
input_label = "Describe Issues / Provide Input for Code:"
input_help = "Describe any errors encountered, unexpected behavior, or specific inputs you want the AI to test/consider."
elif current_stage_ui == "merge_review_security_feedback":
input_label = "Your Feedback on Review/Security Reports:"
input_help = "Provide any comments, clarifications, or priorities regarding the code review and security findings."
input_key = f"text_input_{current_stage_ui}" # Stage-specific key
user_val = st.text_area(
input_label,
height=150,
key=input_key,
value=st.session_state.get('user_input', ''), # Use temporary storage if needed for complex edits
help=input_help
)
submit_key = f"submit_button_{current_stage_ui}" # Stage-specific key
if st.button("Submit", key=submit_key):
user_text = user_val.strip()
# Basic validation: Ensure input is not empty
if not user_text:
st.warning("Please enter some input before submitting.")
else:
state = st.session_state.workflow_state
# Validate state type
if not isinstance(state, dict):
st.error("Workflow state is invalid. Restarting.")
logger.critical("Workflow state became invalid (not a dict). Forcing restart.")
initialize_state()
st.rerun()
st.stop()
try:
next_stage = None # Initialize next stage
# Ensure message list exists in state
if 'messages' not in state or not isinstance(state['messages'], list):
state['messages'] = []
# Create the HumanMessage object
human_message = SDLC.HumanMessage(content=user_text)
# Add to master list
state["messages"].append(human_message)
# Add to current cycle display list
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(human_message)
# --- Map current stage to state key, next run stage, and input type ---
# Tuple format: (state_key_to_update, next_processing_stage, needs_list_append)
map_logic = {
"collect_answers": ("user_input_answers", "run_generate_questions", True),
"collect_user_story_human_feedback": ("user_story_human_feedback", "run_refine_user_stories", False),
"collect_product_review_human_feedback": ("product_review_human_feedback", "run_refine_product_review", False),
"collect_design_doc_human_feedback": ("design_doc_human_feedback", "run_refine_design_doc", False),
"collect_uml_human_feedback": ("uml_human_feedback", "run_refine_uml_codes", False), # Special dict handling below
"collect_code_human_input": ("code_human_input", "run_web_search_code", False),
"collect_code_human_feedback": ("code_human_feedback", "run_refine_code", False),
"merge_review_security_feedback": ("review_security_human_feedback", "run_refine_code_with_reviews", False),
"collect_quality_human_feedback": ("quality_human_feedback", "run_refine_quality_and_code", False),
"collect_deployment_human_feedback": ("deployment_human_feedback", "run_refine_deployment", False),
}
if current_stage_ui in map_logic:
key_to_update, next_process_stage, is_list_input = map_logic[current_stage_ui]
# Store the input text in the workflow state dictionary
if is_list_input:
# Append input to the list for this key
state[key_to_update] = state.get(key_to_update, []) + [user_text]
elif key_to_update == "uml_human_feedback":
# Store UML feedback in the expected dict format, using 'all' for simplicity
state[key_to_update] = {"all": user_text}
else:
# Overwrite state key with the new text value
state[key_to_update] = user_text
next_stage = next_process_stage # Set the next stage for processing
# --- Special Handling Logic ---
# Q&A Completion Check
if current_stage_ui == "collect_answers":
state["user_input_iteration"] = state.get("user_input_iteration", 0) + 1
min_iterations_required = state.get("user_input_min_iterations", 1)
# Check if #DONE is present (case-insensitive) in the last non-empty line
lines = [line.strip() for line in user_text.splitlines() if line.strip()]
is_done_signal_present = "#DONE" in lines[-1].upper() if lines else False
logger.debug(f"Q&A Iteration: {state['user_input_iteration']} / {min_iterations_required}. '#DONE' signal present: {is_done_signal_present}")
# Check if minimum iterations met AND done signal given
if state["user_input_iteration"] >= min_iterations_required and is_done_signal_present:
state["user_input_done"] = True
next_stage = "run_refine_prompt" # Override: Q&A phase is finished, move to refining the prompt
logger.info("Minimum Q&A iterations met and #DONE signal received. Proceeding to prompt refinement.")
else:
state["user_input_done"] = False
# next_stage remains 'run_generate_questions' (to ask more questions)
logger.info("Continuing Q&A round.")
# Skip Web Search if Tavily is not configured
if current_stage_ui == "collect_code_human_input" and not state.get('tavily_instance'):
state["code_web_search_results"] = "Skipped (Tavily client not configured)"
next_stage = "run_generate_code_feedback" # Skip web search and go directly to code feedback
logger.info("Tavily not configured. Skipping web search step.")
else:
# Fallback if stage logic is somehow missing
st.error(f"Internal Error: Input handling logic is undefined for stage '{current_stage_ui}'. Please report this.")
logger.error(f"Input handling logic missing for defined input stage: {current_stage_ui}")
# --- Transition to Next Stage ---
if next_stage:
st.session_state.workflow_state = state # Commit state changes
st.session_state.user_input = "" # Clear the temporary input box content on successful submission
st.session_state.stage = next_stage # Update the application stage
logger.info(f"User input submitted for stage '{current_stage_ui}'. Transitioning to stage '{next_stage}'.")
st.rerun() # Rerun Streamlit to reflect the new stage
except Exception as e:
st.error(f"An error occurred while processing your input: {e}")
logger.error(f"Error processing input for stage '{current_stage_ui}': {e}", exc_info=True)
# Keep the input in the text box on error by not clearing st.session_state.user_input
# --- Test Execution Feedback Area ---
elif show_test_feedback_area:
st.markdown("### Test Execution & Feedback")
st.info("Please execute the generated tests against the code. Then, provide feedback on the results and indicate if the core functionality passed.")
# Display AI feedback on the tests for context
ai_test_feedback = st.session_state.workflow_state.get("test_cases_feedback", "*No AI feedback on tests was generated.*")
with st.expander("View AI Feedback on Test Cases"):
st.markdown(ai_test_feedback)
# Input area for human feedback/results
human_fb_text = st.text_area(
"Your Feedback & Test Results:",
height=150,
key="test_case_human_feedback_input", # Unique key
help="Describe which tests passed/failed, provide any error messages, stack traces, or observations from running the tests."
)
# Radio button for overall PASS/FAIL status
pass_fail_status = st.radio(
"Did the core functionality pass the tests?",
options=("PASS", "FAIL"),
index=1, # Default to FAIL
key="test_case_pass_fail_radio", # Unique key
horizontal=True,
help="Select PASS only if the critical user stories are working as expected based on your testing."
)
# Action buttons
col1, col2 = st.columns(2)
with col1: # Submit Results button
submit_key_test = "submit_test_results_button" # Unique key
if st.button("Submit Test Results", key=submit_key_test):
state = st.session_state.workflow_state
# Ensure messages list exists
if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = []
# Format feedback and create HumanMessage
feedback_content = f"Test Execution Summary:\n- Overall Status: {pass_fail_status}\n- Detailed Feedback/Results:\n{human_fb_text}"
human_message = SDLC.HumanMessage(content=feedback_content)
# Add message to master list and current cycle display
state["messages"].append(human_message)
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(human_message)
# Update state with feedback and pass/fail status
state["test_cases_human_feedback"] = feedback_content
state["test_cases_passed"] = (pass_fail_status == "PASS")
logger.info(f"Test results submitted. Overall status: {pass_fail_status}.")
# Determine next stage based on pass/fail
next_stage_after_test = "run_save_testing_outputs" if state["test_cases_passed"] else "run_refine_test_cases_and_code"
st.session_state.stage = next_stage_after_test
st.session_state.workflow_state = state # Commit state changes
logger.info(f"Transitioning to stage '{next_stage_after_test}' based on test results.")
st.rerun()
with col2: # Submit & Regenerate Code button (optional, allows skipping refinement)
regen_key_test = "regenerate_code_from_testing_button" # Unique key
if st.button("Regenerate Code (If Stuck)", key=regen_key_test, help="Use this if refinement isn't working and you want the AI to try generating code again from scratch, incorporating this test feedback."):
state = st.session_state.workflow_state
if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = []
# Format feedback indicating regeneration request
feedback_content_regen = f"Test Execution Summary:\n- Overall Status: {pass_fail_status}\n- Detailed Feedback/Results:\n{human_fb_text}\n\nDecision: Requesting full code regeneration based on this feedback."
human_message_regen = SDLC.HumanMessage(content=feedback_content_regen)
# Add message to history
state["messages"].append(human_message_regen)
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(human_message_regen)
# Store feedback, ensure test_cases_passed is False
state["test_cases_human_feedback"] = feedback_content_regen # Store context
state["test_cases_passed"] = False # Force refinement/regen path
logger.info(f"Test feedback submitted ({pass_fail_status}), requesting code regeneration.")
# --- Prepare Context for Code Regeneration ---
# Package testing feedback to guide the *initial* code generation step again
regen_context = f"Context from Failed Testing Cycle:\n- Overall Status: {pass_fail_status}\n- User Feedback/Errors:\n{human_fb_text}\n- AI Feedback on Failed Tests:\n{ai_test_feedback}\n\nInstruction: Regenerate the entire codebase attempting to address these issues from the start."
state["code_human_input"] = regen_context # Use the input field of the code generation cycle
# Add context message (optional, can be verbose but useful for tracing)
context_message = SDLC.HumanMessage(content=f"Context Forwarded for Code Regeneration (from Testing): {regen_context[:300]}...")
state["messages"].append(context_message) # Add to master list
st.session_state.current_cycle_messages.append(context_message) # Add to cycle list
# --- Transition Back to Code Generation ---
# NOTE: This jumps back significantly. Consider if a less drastic jump is desired.
# For now, jumping back to the *input* stage before initial code gen.
st.session_state.stage = "run_generate_initial_code" # Go back to generate initial code
st.session_state.workflow_state = state # Commit state
logger.info("Transitioning back to 'run_generate_initial_code' for regeneration based on test feedback.")
st.rerun()
# --- Decision Buttons (Approve/Refine) ---
elif show_decision_buttons:
st.markdown("### Decision Point")
st.info("Review the latest output for this cycle. Choose whether to refine it further based on feedback or approve it and proceed to the next cycle.")
# Define mappings for Refine and Proceed actions based on the current stage
# Refine Map: current_decision_stage -> next_feedback_or_input_stage
refine_map = {
"collect_user_story_decision": "run_generate_user_story_feedback",
"collect_product_review_decision": "run_generate_product_review_feedback",
"collect_design_doc_decision": "run_generate_design_doc_feedback",
"collect_uml_decision": "run_generate_uml_feedback",
"collect_code_decision": "collect_code_human_input", # Refining code usually needs new input/issues
"collect_review_security_decision": "run_code_review", # Restart review cycle
"collect_quality_decision": "run_generate_quality_feedback",
"collect_deployment_decision": "run_generate_deployment_feedback",
}
# Proceed Map: current_decision_stage -> (done_flag_key, save_function or None, next_cycle_start_stage)
proceed_map = {
"collect_user_story_decision": ("user_story_done", SDLC.save_final_user_story, "run_generate_initial_product_review"),
"collect_product_review_decision": ("product_review_done", SDLC.save_final_product_review, "run_generate_initial_design_doc"),
"collect_design_doc_decision": ("design_doc_done", SDLC.save_final_design_doc, "run_select_uml_diagrams"),
"collect_uml_decision": ("uml_done", SDLC.save_final_uml_diagrams, "run_generate_initial_code"),
# Proceeding from Code Generation saves the current code to final_code_files
"collect_code_decision": ("code_done", None, "run_code_review"), # No specific save func here, handled in logic below
"collect_review_security_decision": ("review_security_done", SDLC.save_review_security_outputs, "run_generate_initial_test_cases"),
"collect_quality_decision": ("quality_done", SDLC.save_final_quality_analysis, "generate_initial_deployment"), # Go to deployment prefs form
"collect_deployment_decision": ("deployment_done", SDLC.save_final_deployment_plan, "END"), # End of workflow
}
# Determine button layout (add third button for QA code regen)
num_cols = 3 if current_stage_ui == "collect_quality_decision" else 2
cols = st.columns(num_cols)
# --- Refine Button ---
with cols[0]:
refine_key = f"refine_button_{current_stage_ui}" # Unique key
if st.button("Refine Further", key=refine_key, help="Go back and provide more feedback or request AI changes for the current artifact(s)."):
if current_stage_ui in refine_map:
state = st.session_state.workflow_state
# Mark as not done (to allow refinement loop)
done_key = current_stage_ui.replace("collect_", "").replace("_decision", "_done")
state[done_key] = False
next_refine_stage = refine_map[current_stage_ui]
# Add human message indicating decision
refine_message = SDLC.HumanMessage(content=f"Decision: Refine '{current_major_cycle}' cycle further.")
state['messages'] = state.get('messages', []) + [refine_message]
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(refine_message)
# Transition to the refinement starting stage
st.session_state.stage = next_refine_stage
st.session_state.workflow_state = state
logger.info(f"Decision made to Refine cycle '{current_major_cycle}'. Transitioning to stage '{next_refine_stage}'.")
st.rerun()
else:
st.warning(f"Refinement logic is not defined for stage '{current_stage_ui}'.")
logger.warning(f"Attempted to refine from stage '{current_stage_ui}' but no refine path is defined.")
# --- Proceed Button ---
with cols[1]:
proceed_key = f"proceed_button_{current_stage_ui}" # Unique key
if st.button("Approve & Proceed", key=proceed_key, help="Finalize the current cycle's artifacts and move to the next stage of the workflow."):
if current_stage_ui in proceed_map:
state = st.session_state.workflow_state
done_key, save_function, next_major_stage = proceed_map[current_stage_ui]
error_occurred = False
try:
# Mark the cycle as done
state[done_key] = True
logger.info(f"Decision made to Proceed from cycle '{current_major_cycle}'. Marked '{done_key}'=True.")
# Add human message indicating decision
proceed_message = SDLC.HumanMessage(content=f"Decision: Approve and proceed from '{current_major_cycle}' cycle.")
state['messages'] = state.get('messages', []) + [proceed_message]
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(proceed_message)
# --- Special Handling for Code Promotion ---
# When proceeding from Code Generation, store the current code as the baseline for Review/Security
if current_stage_ui == "collect_code_decision":
current_code_object = state.get("code_current")
if current_code_object and isinstance(current_code_object, SDLC.GeneratedCode) and current_code_object.files:
state["final_code_files"] = current_code_object.files # This becomes the input for the next stage
logger.info(f"Promoted {len(current_code_object.files)} code files from 'code_current' to 'final_code_files' for Review cycle.")
else:
st.warning("Proceeding from Code Generation, but the 'code_current' state seems invalid or empty. Review cycle might lack code.")
logger.warning("Proceeding from Code Generation, but 'code_current' is invalid or has no files. Setting 'final_code_files' to empty list.")
state["final_code_files"] = []
# --- Execute Save Function (if applicable) ---
if save_function:
save_func_name = getattr(save_function, '__name__', 'artifact_save_function')
logger.info(f"Executing save function: {save_func_name}")
with st.spinner(f"Saving {save_func_name.replace('save_final_', '').replace('_', ' ')}..."):
state = save_function(state) # Update state with results of save function (e.g., file paths)
st.session_state.workflow_state = state # Commit state update
# --- Post-Save Validation (Check if expected output path exists) ---
# Map save functions to the state keys where they store output paths
save_path_keys = {
SDLC.save_final_user_story: "final_user_story_path",
SDLC.save_final_product_review: "final_product_review_path",
SDLC.save_final_design_doc: "final_design_document_path",
SDLC.save_final_uml_diagrams: "final_uml_diagram_folder", # Check folder for UML
SDLC.save_review_security_outputs: "final_review_security_folder", # Check main folder
SDLC.save_testing_outputs: "final_testing_folder", # Check main folder
SDLC.save_final_quality_analysis: "final_quality_analysis_path", # Check report path
SDLC.save_final_deployment_plan: "final_deployment_path",
}
expected_path_key = save_path_keys.get(save_function)
saved_path_value = state.get(expected_path_key) if expected_path_key else True # Assume success if no path key expected
# Check if the path exists (and is a file/dir as appropriate)
save_successful = False
if expected_path_key:
if saved_path_value and isinstance(saved_path_value, str) and os.path.exists(saved_path_value):
# Basic check: path exists. Could add isfile/isdir if needed.
save_successful = True
else:
save_successful = True # No specific path to check
# Additionally check for QA saving the final code folder
if save_function == SDLC.save_final_quality_analysis:
final_code_folder_path = state.get("final_code_folder")
if not (final_code_folder_path and os.path.isdir(final_code_folder_path)):
save_successful = False # Mark as failed if final code didn't save properly
if not save_successful:
st.warning(f"Proceeding, but the save operation for '{current_major_cycle}' might have failed (output path invalid or missing). Check logs.")
logger.warning(f"Save check failed after running {save_func_name}. Expected path key: {expected_path_key}, Value: {saved_path_value}")
else:
logger.info(f"Save function {save_func_name} completed successfully and path validation passed (if applicable).")
except Exception as e:
st.error(f"An error occurred while finalizing cycle '{current_major_cycle}': {e}")
logger.error(f"Error during 'Proceed' action for stage '{current_stage_ui}': {e}", exc_info=True)
error_occurred = True
# Transition only if no errors occurred
if not error_occurred:
st.session_state.stage = next_major_stage
logger.info(f"Transitioning to the next cycle's start stage: '{next_major_stage}'")
st.rerun()
else:
st.warning(f"Proceed logic is not defined for stage '{current_stage_ui}'.")
logger.warning(f"Attempted to proceed from stage '{current_stage_ui}' but no proceed path is defined.")
# --- Regenerate Code Button (Only for QA Decision) ---
if current_stage_ui == "collect_quality_decision":
with cols[2]:
regen_key_qa = "regenerate_code_from_qa_button" # Unique key
if st.button("Regenerate Code", key=regen_key_qa, help="If QA revealed significant issues needing a code rewrite, use this to jump back to code generation, providing QA feedback as context."):
state = st.session_state.workflow_state
if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = []
logger.info("Decision: Requesting code regeneration based on QA findings.")
# Add human message
regen_message = SDLC.HumanMessage(content="Decision: Regenerate code based on Quality Analysis findings.")
state["messages"].append(regen_message)
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(regen_message)
# --- Prepare context for regeneration ---
qa_report_summary = state.get('quality_current_analysis', 'No QA report available.')[:1500] # Limit summary length
regen_context = f"Context from Quality Analysis Cycle:\n- Final QA Report Summary:\n{qa_report_summary}\n\nInstruction: Regenerate the codebase attempting to address the quality concerns raised in the report."
state["code_human_input"] = regen_context # Feed context into the code gen input
# Add context message to history
context_message = SDLC.HumanMessage(content=f"Context Forwarded for Code Regeneration (from QA): {regen_context[:300]}...")
state["messages"].append(context_message)
st.session_state.current_cycle_messages.append(context_message)
# --- Transition back to Code Generation ---
st.session_state.stage = "run_generate_initial_code" # Jump back
st.session_state.workflow_state = state
logger.info("Transitioning back to 'run_generate_initial_code' for regeneration based on QA feedback.")
st.rerun()
# --- End Stage ---
elif current_stage_ui == "END":
st.balloons()
final_message = "## 🎉 Workflow Completed Successfully! 🎉\n\nAll cycles have been processed.\n\nYou can download the final artifacts and code snapshots from the sidebar.\n\nUse the 'Restart Workflow' button in the sidebar to begin a new project."
update_display(final_message) # Update the display area as well
st.markdown(final_message)
logger.info("Workflow reached END stage.")
# --- Fallback for Unknown UI Stages ---
# This handles cases where the stage is not 'initial_setup', not a 'run_' stage,
# and not one of the known input/decision stages. Should ideally not happen.
elif not current_stage_ui.startswith("run_"):
st.error(f"Internal Error: Reached an unknown UI interaction stage: '{current_stage_ui}'. The workflow might be stuck. Consider restarting.")
logger.error(f"Reached unknown UI stage: {current_stage_ui}. State might be inconsistent.")
# ==============================================================================
# --- Cycle Indicator Column ---
# ==============================================================================
with indicator_col:
st.subheader("Workflow Cycles")
st.caption("Current progress through the SDLC.")
# Determine the current cycle index for highlighting
current_major_indicator = STAGE_TO_CYCLE.get(st.session_state.stage, "Unknown")
current_idx_indicator = -1 # Default if stage/cycle is unknown
if current_major_indicator == "END":
current_idx_indicator = len(CYCLE_ORDER) # Mark as completed
elif current_major_indicator in CYCLE_ORDER:
current_idx_indicator = CYCLE_ORDER.index(current_major_indicator)
# Simple CSS for styling the cycle list
st.markdown("""
<style>
.cycle-item { margin-bottom: 0.75em; transition: all 0.3s ease-in-out; padding: 4px 0; border-radius: 4px; }
.cycle-past { opacity: 0.5; font-size: 0.9em; padding-left: 15px; border-left: 4px solid #cccccc; }
.cycle-current { font-weight: bold; font-size: 1.05em; color: #008080; border-left: 4px solid #008080; padding-left: 11px; background-color: #f0fafa; }
.cycle-future { opacity: 0.8; font-size: 0.95em; padding-left: 15px; border-left: 4px solid #eeeeee; }
.cycle-end { font-weight: bold; font-size: 1.0em; color: #4CAF50; border-left: 4px solid #4CAF50; padding-left: 11px; background-color: #f0fff0; }
</style>
""", unsafe_allow_html=True)
# Display the cycle list with indicators
# Optionally implement windowing/scrolling if list gets very long
# win_before, win_after = 2, 4 # Example windowing parameters
# start = max(0, current_idx_indicator - win_before)
# end = min(len(CYCLE_ORDER), start + win_before + win_after + 1)
# start = max(0, end - (win_before + win_after + 1)) # Adjust start if end was clamped
for i, cycle_name in enumerate(CYCLE_ORDER):
# if start <= i < end : # Apply windowing if uncommented above
css_class = "cycle-item"
display_name = cycle_name
if i < current_idx_indicator:
css_class += " cycle-past"
display_name = f"✓ {cycle_name}" # Indicate past cycles
elif i == current_idx_indicator and current_major_indicator != "END":
css_class += " cycle-current"
display_name = f"➡️ {cycle_name}" # Indicate current cycle
else: # Future cycles
css_class += " cycle-future"
# Render the cycle item using markdown with embedded HTML/CSS
st.markdown(f'<div class="{css_class}">{display_name}</div>', unsafe_allow_html=True)
# Display completion marker if workflow is finished
if current_major_indicator == "END":
st.markdown(f'<div class="cycle-item cycle-end">✅ Workflow End</div>', unsafe_allow_html=True)
# ==============================================================================
# --- Invisible Stage Execution Logic ---
# ==============================================================================
def run_workflow_step(func, next_display_stage, *args):
"""
Executes a backend workflow function (from SDLC.py), handles state updates,
manages display content, adds messages to history, and transitions the UI stage.
Args:
func: The backend function to execute (e.g., SDLC.generate_questions).
next_display_stage: The stage the UI should transition to after this step completes.
*args: Additional arguments required by the backend function.
"""
state_before = st.session_state.workflow_state
messages_before_count = len(state_before.get('messages', []))
# --- Define a VALID default GeneratedCode object for safety ---
# This object includes the required 'instructions' field.
valid_default_code = SDLC.GeneratedCode(files=[], instructions="[Default Instructions - Code Not Generated or Error]")
# --- Pre-execution Checks ---
if not isinstance(state_before, dict):
st.error("Workflow state has become invalid. Please restart.")
logger.critical("Workflow state is not a dictionary. Halting execution.")
initialize_state() # Consider resetting state automatically or just stopping
st.rerun()
return # Stop execution
# Get function name for logging/display
func_name = getattr(func, '__name__', repr(func))
# Handle lambda function name (specifically for deployment)
if func_name == '<lambda>': func_name = "generate_initial_deployment"
logger.info(f"Executing workflow step: {func_name}")
try:
# Show spinner during execution
with st.spinner(f"Running: {func_name.replace('_',' ').title()}..."):
# --- Check for Required Resources (LLM, Tavily) ---
needs_llm = func not in [
SDLC.save_final_user_story, SDLC.save_final_product_review,
SDLC.save_final_design_doc, SDLC.save_final_uml_diagrams,
SDLC.save_review_security_outputs, SDLC.save_testing_outputs,
SDLC.save_final_quality_analysis, SDLC.save_final_deployment_plan,
SDLC.web_search_code # Web search uses Tavily, checked separately
]
if needs_llm and not state_before.get('llm_instance'):
raise ConnectionError("LLM client is not configured or initialized in the workflow state.")
# --- Handle Skippable Steps (e.g., Web Search) ---
if func == SDLC.web_search_code and not state_before.get('tavily_instance'):
logger.warning("Web search step called, but Tavily client is not available in state. Skipping step.")
state_before["code_web_search_results"] = "Skipped (Tavily client not configured or API key missing)"
# Add a message indicating the skip
skip_message = AIMessage(content="Web Search: Skipped (Tavily client unavailable)")
state_before["messages"] = state_before.get("messages", []) + [skip_message]
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.append(skip_message)
# Manually update state and transition
st.session_state.workflow_state = state_before
st.session_state.stage = "run_generate_code_feedback" # Define the stage *after* web search
logger.info("Skipped web search. Transitioning directly to 'run_generate_code_feedback'.")
st.rerun()
return # Exit this function call
# --- Special Handling for Sequential Review/Security Steps ---
# If the function is code_review, run it, update state, and immediately trigger security_check
if func == SDLC.code_review:
logger.info("Executing code review step...")
state_after_review = SDLC.code_review(state_before, *args)
if not isinstance(state_after_review, dict):
raise TypeError(f"Function 'code_review' did not return a dictionary state. Got: {type(state_after_review)}")
# Add any new messages from code_review to the cycle display
messages_after_review_count = len(state_after_review.get('messages', []))
new_review_messages = state_after_review.get('messages', [])[messages_before_count:messages_after_review_count]
if new_review_messages:
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.extend(new_review_messages)
# Update the main state
st.session_state.workflow_state = state_after_review
# Transition directly to the security check stage
st.session_state.stage = "run_security_check"
logger.info("Code review completed. Transitioning directly to 'run_security_check'.")
st.rerun()
return # Exit this function call, security check will run on the next rerun
# --- Normal Function Execution ---
updated_state = func(state_before, *args)
# --- Post-execution State Update and Validation ---
if not isinstance(updated_state, dict):
# This indicates a fundamental issue with the backend function
logger.error(f"Workflow function '{func_name}' returned an invalid type: {type(updated_state)}. Expected a dictionary.")
st.error(f"Internal Error: Step '{func_name}' failed due to an unexpected return type. Workflow halted.")
st.stop() # Halt execution as state is likely corrupted
return
st.session_state.workflow_state = updated_state
logger.debug(f"State successfully updated after executing {func_name}.")
# --- Add New AI Messages to Cycle Display ---
messages_after_count = len(updated_state.get('messages', []))
new_messages = updated_state.get('messages', [])[messages_before_count:messages_after_count]
if new_messages:
# Filter to only add AI messages generated by this step
new_ai_messages = [msg for msg in new_messages if isinstance(msg, AIMessage)]
if new_ai_messages:
if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = []
st.session_state.current_cycle_messages.extend(new_ai_messages)
logger.debug(f"Added {len(new_ai_messages)} new AI message(s) from {func_name} to cycle display.")
# --- Determine Display Content for the Next UI Stage ---
# (This complex block sets `display_text` and potentially overrides `next_display_stage`)
display_text = f"Completed step: {func_name}. Preparing for {next_display_stage}..." # Default message
if func == SDLC.generate_questions:
# Display the newly generated questions
questions = updated_state.get("user_input_questions", [])[-5:] # Get last 5 questions
if questions:
min_iter = updated_state.get('user_input_min_iterations', 1)
current_iter = updated_state.get("user_input_iteration", 0) # Iteration *before* answering these
is_min_met = (current_iter + 1 >= min_iter) # Check if *this round* meets the minimum
min_iter_msg = f"(Minimum {min_iter} rounds required)" if not is_min_met else ""
display_text = f"**Please answer the following questions {min_iter_msg}:**\n\n" + "\n".join(f"- {q}" for q in questions)
if is_min_met:
display_text += "\n\n*When finished answering, type **#DONE** on a new line to proceed.*"
next_display_stage = "collect_answers" # Ensure UI goes to answer collection
else:
# If no questions were generated (e.g., AI decided it's enough)
display_text = "The AI generated no further questions. Refining the project prompt based on the discussion..."
logger.info("No new questions generated by AI. Moving to refine prompt.")
next_display_stage = "run_refine_prompt" # Skip answer collection
elif func == SDLC.refine_prompt:
refined_prompt = updated_state.get('refined_prompt', '*Error: Refined prompt not found in state.*')
display_text = f"**Refined Project Prompt:**\n```markdown\n{refined_prompt}\n```\n\n*Generating initial User Stories based on this prompt...*"
elif func == SDLC.generate_initial_user_stories:
stories = updated_state.get('user_story_current', '*Error: User stories not found.*')
display_text = f"**Initial User Stories Generated:**\n\n{stories}\n\n*Generating AI feedback on these stories...*"
elif func == SDLC.generate_user_story_feedback:
current_stories = updated_state.get('user_story_current', '*N/A*')
ai_feedback = updated_state.get('user_story_feedback', '*N/A*')
display_text = f"**Current User Stories:**\n```\n{current_stories}\n```\n---\n**AI Feedback on Stories:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*"
next_display_stage = "collect_user_story_human_feedback" # Ready for human input
elif func == SDLC.refine_user_stories:
refined_stories = updated_state.get('user_story_current', '*N/A*')
display_text = f"**Refined User Stories:**\n\n{refined_stories}\n\n*Please review the refined stories. Choose 'Refine Further' or 'Approve & Proceed' below.*"
next_display_stage = "collect_user_story_decision" # Ready for decision
elif func == SDLC.generate_initial_product_review:
review = updated_state.get('product_review_current', '*N/A*')
display_text = f"**Initial Product Owner Review Generated:**\n\n{review}\n\n*Generating AI feedback on this review...*"
elif func == SDLC.generate_product_review_feedback:
current_review = updated_state.get('product_review_current', '*N/A*')
ai_feedback = updated_state.get('product_review_feedback', '*N/A*')
display_text = f"**Current Product Review:**\n```\n{current_review}\n```\n---\n**AI Feedback on Review:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*"
next_display_stage = "collect_product_review_human_feedback"
elif func == SDLC.refine_product_review:
refined_review = updated_state.get('product_review_current', '*N/A*')
display_text = f"**Refined Product Review:**\n\n{refined_review}\n\n*Please review the refined PO review. Choose 'Refine Further' or 'Approve & Proceed' below.*"
next_display_stage = "collect_product_review_decision"
elif func == SDLC.generate_initial_design_doc:
doc = updated_state.get('design_doc_current', '*N/A*')
display_text = f"**Initial Design Document Generated:**\n```markdown\n{doc}\n```\n\n*Generating AI feedback on this document...*"
elif func == SDLC.generate_design_doc_feedback:
current_doc = updated_state.get('design_doc_current', '*N/A*')
ai_feedback = updated_state.get('design_doc_feedback', '*N/A*')
display_text = f"**Current Design Document:**\n```markdown\n{current_doc}\n```\n---\n**AI Feedback on Design:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*"
next_display_stage = "collect_design_doc_human_feedback"
elif func == SDLC.refine_design_doc:
refined_doc = updated_state.get('design_doc_current', '*N/A*')
display_text = f"**Refined Design Document:**\n```markdown\n{refined_doc}\n```\n\n*Please review the refined design. Choose 'Refine Further' or 'Approve & Proceed' below.*"
next_display_stage = "collect_design_doc_decision"
elif func == SDLC.select_uml_diagrams:
messages = updated_state.get('messages', [])
# Try to find the specific justification message from the AI
justification_msg_content = "Relevant UML diagram types selected based on the design." # Default
if messages and isinstance(messages[-1], AIMessage) and ("selected" in messages[-1].content.lower() or "recommend" in messages[-1].content.lower()):
justification_msg_content = messages[-1].content # Use the actual AI message content
display_text = f"**UML Diagram Selection:**\n\n{justification_msg_content}\n\n*Generating initial PlantUML code for selected diagrams...*"
elif func == SDLC.generate_initial_uml_codes:
codes = updated_state.get('uml_current_codes', [])
if codes:
codes_display = "\n\n".join([f"**{c.diagram_type}**:\n```plantuml\n{c.code}\n```" for c in codes])
else:
codes_display = "*No UML codes were generated.*"
display_text = f"**Generated Initial PlantUML Codes:**\n\n{codes_display}\n\n*Generating AI feedback on these diagrams...*"
elif func == SDLC.generate_uml_feedback:
codes = updated_state.get('uml_current_codes', [])
feedback_dict = updated_state.get('uml_feedback', {})
codes_display = "\n\n".join([f"**{c.diagram_type}**:\n```plantuml\n{c.code}\n```" for c in codes]) if codes else "*N/A*"
feedback_display = "\n\n".join([f"**Feedback for {dt}:**\n{fb}" for dt, fb in feedback_dict.items()]) if feedback_dict else "*N/A*"
display_text = f"**Current UML Codes:**\n{codes_display}\n---\n**AI Feedback on Diagrams:**\n{feedback_display}\n\n---\n*Provide your overall feedback or specific changes needed below.*"
next_display_stage = "collect_uml_human_feedback"
elif func == SDLC.refine_uml_codes:
codes = updated_state.get('uml_current_codes', [])
codes_display = "\n\n".join([f"**{c.diagram_type} (Refined):**\n```plantuml\n{c.code}\n```" for c in codes]) if codes else "*N/A*"
display_text = f"**Refined UML Codes:**\n\n{codes_display}\n\n*Please review the refined diagrams. Choose 'Refine Further' or 'Approve & Proceed' below.*"
next_display_stage = "collect_uml_decision"
elif func == SDLC.generate_initial_code:
code_data = updated_state.get("code_current", valid_default_code) # Use valid default here!
files_display = []
total_len, max_len = 0, 4000 # Limit display length
num_files = len(code_data.files) if code_data and code_data.files else 0
instr = code_data.instructions if code_data else "[Instructions not available]"
if num_files > 0:
for f in code_data.files:
header = f"**File: {f.filename}**:\n```\n"
footer = "\n```\n"
# Calculate max content preview length safely
max_content = max(0, max_len - total_len - len(header) - len(footer) - 50) # 50 char buffer
content_preview = f.content[:max_content] if f.content else ""
is_truncated = len(f.content) > len(content_preview) if f.content else False
preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}"
files_display.append(preview_str)
total_len += len(preview_str)
if total_len >= max_len:
files_display.append("\n*...(Code file display truncated due to length)*")
break
code_files_str = "".join(files_display)
display_text = f"**Initial Code Generated ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup & Run Instructions:**\n```\n{instr}\n```\n\n---\n*Try to set up and run the code. Describe any errors or issues below.*"
else:
display_text = "Initial code generation step completed, but no code files were generated. This might indicate an issue with the request or the LLM's response.\n\n*Please describe the expected outcome or provide feedback below.*"
logger.warning("generate_initial_code resulted in a valid GeneratedCode structure but with an empty file list.")
next_display_stage = "collect_code_human_input"
elif func == SDLC.web_search_code:
results = updated_state.get('code_web_search_results', '*No web search results available.*')
display_text = f"**Web Search Results (if applicable):**\n\n{results}\n\n*Generating AI feedback on the code, considering your input and these search results...*"
elif func == SDLC.generate_code_feedback:
ai_feedback = updated_state.get('code_feedback', '*N/A*')
user_input = updated_state.get('code_human_input', None) # Get the input that triggered this
context_header = "**Context Provided (User Input/Issue):**\n" if user_input else ""
user_input_display = f"```\n{user_input}\n```\n---\n" if user_input else ""
display_text = f"{context_header}{user_input_display}**AI Code Feedback:**\n\n{ai_feedback}\n\n---\n*Please provide your comments on the AI's feedback below (e.g., 'Yes, suggestion 1 seems right', 'No, the issue is actually in file X').*"
next_display_stage = "collect_code_human_feedback"
elif func == SDLC.refine_code:
code_data = updated_state.get("code_current", valid_default_code) # Use valid default
files_display=[]; total_len, max_len=0, 4000
num_files = len(code_data.files) if code_data else 0
instr = code_data.instructions if code_data else "[Instructions not available]"
if num_files > 0:
for f in code_data.files:
header = f"**File: {f.filename} (Refined):**\n```\n"; footer = "\n```\n"
max_content = max(0, max_len - total_len - len(header) - len(footer) - 50)
content_preview = f.content[:max_content] if f.content else ""; is_truncated = len(f.content) > len(content_preview) if f.content else False
preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}"
files_display.append(preview_str); total_len += len(preview_str)
if total_len >= max_len: files_display.append("\n*...(Code file display truncated)*"); break
code_files_str = "".join(files_display)
display_text = f"**Refined Code ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup/Run Instructions:**\n```\n{instr}\n```\n\n---\n*Please review the refined code. Choose 'Refine Further' or 'Approve & Proceed' below.*"
else:
display_text = "Code refinement step completed, but no files were found in the result. This might indicate an error.\n\n*Choose 'Refine Further' to provide input or 'Approve & Proceed' if this is expected.*"
logger.warning("refine_code resulted in a valid GeneratedCode structure but with an empty file list.")
next_display_stage = "collect_code_decision"
elif func == SDLC.security_check: # Display after security check completes (code review ran just before)
review_fb = updated_state.get('code_review_current_feedback', '*Code review feedback not available.*')
security_fb = updated_state.get('security_current_feedback', '*Security check feedback not available.*')
display_text = f"**Code Review Findings:**\n```\n{review_fb}\n```\n---\n**Security Check Findings:**\n```\n{security_fb}\n```\n---\n*Please provide your overall feedback on these reports below (e.g., prioritize fixes, accept risks).*";
next_display_stage = "merge_review_security_feedback" # Stage to collect feedback on both reports
elif func == SDLC.refine_code_with_reviews:
code_data = updated_state.get("code_current", valid_default_code) # Use valid default
files_display=[]; total_len, max_len=0, 4000
num_files = len(code_data.files) if code_data else 0
instr = code_data.instructions if code_data else "[Instructions not available]"
if num_files > 0:
for f in code_data.files:
header = f"**File: {f.filename} (Post-Review/Security):**\n```\n"; footer = "\n```\n"
max_content = max(0, max_len - total_len - len(header) - len(footer) - 50)
content_preview = f.content[:max_content] if f.content else ""; is_truncated = len(f.content) > len(content_preview) if f.content else False
preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}"
files_display.append(preview_str); total_len += len(preview_str)
if total_len >= max_len: files_display.append("\n*...(Code file display truncated)*"); break
code_files_str = "".join(files_display)
display_text = f"**Code Refined Post-Review & Security ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup/Run Instructions:**\n```\n{instr}\n```\n\n---\n*This code incorporates feedback from the review cycle. Review the final code and decide below.*"
else:
display_text = "Code refinement post-review completed, but no files found. This likely indicates an error.\n\n*Choose 'Refine Further' (to restart review) or 'Approve & Proceed' if this was somehow expected.*"
logger.error("refine_code_with_reviews resulted in an empty file list.")
next_display_stage = "collect_review_security_decision"
elif func == SDLC.generate_initial_test_cases:
tests = updated_state.get('test_cases_current', [])
tests_display = "\n\n".join([f"**Test: {tc.description}**\n - Input: `{tc.input_data}`\n - Expected Output: `{tc.expected_output}`" for tc in tests]) if tests else "*No test cases generated.*"
display_text=f"**Generated Initial Test Cases ({len(tests)}):**\n\n{tests_display}\n\n*Generating AI feedback on these test cases...*"
elif func == SDLC.generate_test_cases_feedback:
tests = updated_state.get('test_cases_current', [])
ai_feedback = updated_state.get('test_cases_feedback', '*N/A*')
tests_display = "\n\n".join([f"**Test: {tc.description}**\n - Input: `{tc.input_data}`\n - Expected Output: `{tc.expected_output}`" for tc in tests]) if tests else "*N/A*"
display_text=f"**Current Test Cases ({len(tests)}):**\n{tests_display}\n---\n**AI Feedback on Tests:**\n\n{ai_feedback}\n\n---\n*Please execute these tests against the code and report the results/feedback below.*";
next_display_stage = "collect_test_cases_human_feedback"
elif func == SDLC.refine_test_cases_and_code:
tests = updated_state.get('test_cases_current', [])
code_data_after_test_refine = updated_state.get('code_current', valid_default_code) # Use valid default
files_count = len(code_data_after_test_refine.files) if code_data_after_test_refine else 0
code_update_msg = f"Code ({files_count} files) and {len(tests)} test case(s) were refined based on test failures." if files_count > 0 else f"{len(tests)} Test case(s) refined (code may not have changed)."
tests_display = "\n\n".join([f"**Test: {tc.description}**:\n - Input:`{tc.input_data}`\n - Expected:`{tc.expected_output}`" for tc in tests]) if tests else "*N/A*"
display_text = f"**Refinement After Test Failure:**\n*{code_update_msg}*\n\n**Refined Tests ({len(tests)}):**\n{tests_display}\n\n*Please execute the tests again using the refined code and provide results/feedback below.*";
next_display_stage = "collect_test_cases_human_feedback" # Loop back to collect results again
elif func == SDLC.save_testing_outputs:
display_text = f"Testing cycle completed (PASS). Final tests and passed code snapshot saved.\n\n*Generating overall Quality Analysis report...*"
elif func == SDLC.generate_initial_quality_analysis:
report = updated_state.get('quality_current_analysis', '*N/A*')
display_text=f"**Initial Quality Analysis Report Generated:**\n\n{report}\n\n*Generating AI feedback on this QA report...*"
elif func == SDLC.generate_quality_feedback:
current_report = updated_state.get('quality_current_analysis', '*N/A*')
ai_feedback = updated_state.get('quality_feedback', '*N/A*')
display_text=f"**Current QA Report:**\n```\n{current_report}\n```\n---\n**AI Feedback on QA Report:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback on the QA report below.*";
next_display_stage = "collect_quality_human_feedback"
elif func == SDLC.refine_quality_and_code:
report = updated_state.get('quality_current_analysis', '*N/A*')
code_data_qa_refined = updated_state.get('code_current', valid_default_code) # Use valid default
code_files_exist = bool(code_data_qa_refined and code_data_qa_refined.files)
code_update_msg = "*Minor, non-functional code polish may have been applied based on QA feedback.*" if code_files_exist else "*QA report refined (code unchanged).*"
display_text=f"**Refined Quality Analysis Report:**\n\n{report}\n\n{code_update_msg}\n\n*Please review the final QA report. Choose 'Refine Further', 'Approve & Proceed', or 'Regenerate Code' below.*";
next_display_stage = "collect_quality_decision"
elif func_name == "generate_initial_deployment": # Handle lambda name
plan = updated_state.get('deployment_current_process', '*N/A*')
# Retrieve prefs used from state if stored, otherwise use placeholder
prefs_used = st.session_state.get('current_prefs', '[Preferences used previously, not displayed]')
display_text = f"**Initial Deployment Plan Generated:**\n*Based on Preferences:*\n```\n{prefs_used}\n```\n*Generated Plan:*\n```markdown\n{plan}\n```\n\n*Generating AI feedback on this deployment plan...*";
elif func == SDLC.generate_deployment_feedback:
current_plan = updated_state.get('deployment_current_process', '*N/A*')
ai_feedback = updated_state.get('deployment_feedback', '*N/A*')
display_text=f"**Current Deployment Plan:**\n```markdown\n{current_plan}\n```\n---\n**AI Feedback on Plan:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or required changes for the deployment plan below.*";
next_display_stage = "collect_deployment_human_feedback"
elif func == SDLC.refine_deployment:
plan = updated_state.get('deployment_current_process', '*N/A*')
display_text = f"**Refined Deployment Plan:**\n```markdown\n{plan}\n```\n\n*Please review the refined deployment plan. Choose 'Refine Further' or 'Approve & Proceed' below.*";
next_display_stage = "collect_deployment_decision"
# Display logic for save functions
elif func in [SDLC.save_final_user_story, SDLC.save_final_product_review, SDLC.save_final_design_doc, SDLC.save_final_uml_diagrams, SDLC.save_review_security_outputs, SDLC.save_testing_outputs, SDLC.save_final_quality_analysis, SDLC.save_final_deployment_plan]:
# Determine artifact name from function name
artifact_name = func.__name__.replace('save_final_','').replace('_',' ').title()
# Determine next major action/cycle name
next_action_stage = next_display_stage # The stage name provided to run_workflow_step
next_action_cycle = STAGE_TO_CYCLE.get(next_action_stage, next_action_stage).replace('_',' ').title()
# Special case names for clarity
if next_action_stage == "generate_initial_deployment":
next_action_name = "Deployment Preferences Input"
elif next_action_stage == "END":
next_action_name = "Workflow End"
else:
next_action_name = f"{next_action_cycle} Cycle"
display_text = f"✅ **{artifact_name} saved successfully.**\n\n*Proceeding to: {next_action_name}...*"
logger.info(f"Artifact saved: {artifact_name}. Next step starts stage: {next_action_stage}")
# --- Update UI Display and Transition Stage ---
update_display(display_text)
st.session_state.stage = next_display_stage
logger.info(f"Completed step '{func_name}'. UI transitioning to stage '{next_display_stage}'.")
st.rerun() # Rerun Streamlit to reflect the changes
# --- Error Handling ---
except ConnectionError as ce:
error_msg = f"Connection Error during step '{func_name}': {ce}. Please check your API keys, network connection, and service status."
st.error(error_msg)
logger.critical(error_msg, exc_info=False) # Log as critical, but maybe don't need full traceback always
# Optionally add a retry button here specific to connection errors if desired
except pydantic_core.ValidationError as pve:
# Handle Pydantic errors (often from LLM structured output) gracefully
error_details = str(pve)
logger.error(f"Data Validation Error in step '{func_name}': {error_details}", exc_info=True)
# Check if it's the specific error related to the default GeneratedCode
if "GeneratedCode" in error_details and "instructions" in error_details and "Field required" in error_details:
error_msg = f"Internal Application Error: Failed processing a code object during step '{func_name}', likely due to a missing default value in the application code. Please report this issue. Details: {error_details}"
st.error(error_msg)
# Halt here as it's an app logic issue needing a fix in app.py
st.stop()
else:
# General Pydantic error
error_msg = f"Data Validation Error during step '{func_name}': The AI's response did not match the expected format. Details: {error_details}"
st.error(error_msg)
# Offer retry for general validation errors
retry_key_pve = f"retry_btn_pve_{func_name}_{int(time.time())}"
if st.button("Retry Last Step", key=retry_key_pve):
logger.info(f"User initiated retry after Pydantic error in {func_name}.")
st.rerun()
except TypeError as te:
# TypeErrors often indicate programming errors (e.g., wrong argument types)
error_msg = f"Type Error during step '{func_name}': {te}. This might indicate an internal application issue."
st.error(error_msg)
logger.error(f"TypeError executing step '{func_name}': {te}", exc_info=True)
st.stop() # Halt on TypeErrors as they usually require code fixes
except ValueError as ve:
# ValueErrors can be raised by backend logic for specific input issues
error_msg = f"Input Error during step '{func_name}': {ve}. Please check the inputs or previous steps."
st.error(error_msg)
logger.error(f"ValueError executing step '{func_name}': {ve}", exc_info=True)
# Offer retry for ValueErrors as they might be transient or fixable by adjusting input
retry_key_ve = f"retry_btn_ve_{func_name}_{int(time.time())}"
if st.button("Retry Last Step", key=retry_key_ve):
logger.info(f"User initiated retry after ValueError in {func_name}.")
st.rerun()
except Exception as e:
# Catch-all for other unexpected errors
error_msg = f"An unexpected error occurred during step '{func_name}': {e}"
st.error(error_msg)
logger.error(f"Unexpected error executing step '{func_name}': {e}", exc_info=True)
# Offer retry for general exceptions
retry_key_exc = f"retry_btn_exc_{func_name}_{int(time.time())}" # Ensure unique key
if st.button("Retry Last Step", key=retry_key_exc):
logger.info(f"User initiated retry after general exception in {func_name}.")
st.rerun()
# ==============================================================================
# --- Workflow Map Definition ---
# Maps "run_*" stages to their backend function and the next UI stage
# ==============================================================================
workflow_map = {
# Requirements Cycle
"run_generate_questions": (SDLC.generate_questions, "collect_answers"),
"run_refine_prompt": (SDLC.refine_prompt, "run_generate_initial_user_stories"), # End of Requirements
# User Story Cycle
"run_generate_initial_user_stories": (SDLC.generate_initial_user_stories, "run_generate_user_story_feedback"),
"run_generate_user_story_feedback": (SDLC.generate_user_story_feedback, "collect_user_story_human_feedback"),
"run_refine_user_stories": (SDLC.refine_user_stories, "collect_user_story_decision"),
# Product Review Cycle
"run_generate_initial_product_review": (SDLC.generate_initial_product_review, "run_generate_product_review_feedback"),
"run_generate_product_review_feedback": (SDLC.generate_product_review_feedback, "collect_product_review_human_feedback"),
"run_refine_product_review": (SDLC.refine_product_review, "collect_product_review_decision"),
# Design Cycle
"run_generate_initial_design_doc": (SDLC.generate_initial_design_doc, "run_generate_design_doc_feedback"),
"run_generate_design_doc_feedback": (SDLC.generate_design_doc_feedback, "collect_design_doc_human_feedback"),
"run_refine_design_doc": (SDLC.refine_design_doc, "collect_design_doc_decision"),
# UML Cycle
"run_select_uml_diagrams": (SDLC.select_uml_diagrams, "run_generate_initial_uml_codes"),
"run_generate_initial_uml_codes": (SDLC.generate_initial_uml_codes, "run_generate_uml_feedback"),
"run_generate_uml_feedback": (SDLC.generate_uml_feedback, "collect_uml_human_feedback"),
"run_refine_uml_codes": (SDLC.refine_uml_codes, "collect_uml_decision"),
# Code Generation Cycle
"run_generate_initial_code": (SDLC.generate_initial_code, "collect_code_human_input"),
"run_web_search_code": (SDLC.web_search_code, "run_generate_code_feedback"), # Handled specially in run_workflow_step if skipped
"run_generate_code_feedback": (SDLC.generate_code_feedback, "collect_code_human_feedback"),
"run_refine_code": (SDLC.refine_code, "collect_code_decision"),
# Review & Security Cycle
"run_code_review": (SDLC.code_review, "run_security_check"), # Special handling: runs review then triggers security check
"run_security_check": (SDLC.security_check, "merge_review_security_feedback"), # Displays both reports, waits for feedback
"run_refine_code_with_reviews": (SDLC.refine_code_with_reviews, "collect_review_security_decision"),
# Testing Cycle
"run_generate_initial_test_cases": (SDLC.generate_initial_test_cases, "run_generate_test_cases_feedback"),
"run_generate_test_cases_feedback": (SDLC.generate_test_cases_feedback, "collect_test_cases_human_feedback"),
"run_refine_test_cases_and_code": (SDLC.refine_test_cases_and_code, "collect_test_cases_human_feedback"), # Loop back to test execution
"run_save_testing_outputs": (SDLC.save_testing_outputs, "run_generate_initial_quality_analysis"), # End of Testing
# Quality Analysis Cycle
"run_generate_initial_quality_analysis": (SDLC.generate_initial_quality_analysis, "run_generate_quality_feedback"),
"run_generate_quality_feedback": (SDLC.generate_quality_feedback, "collect_quality_human_feedback"),
"run_refine_quality_and_code": (SDLC.refine_quality_and_code, "collect_quality_decision"),
# Deployment Cycle
"run_generate_initial_deployment": (
lambda state: SDLC.generate_initial_deployment(state, st.session_state.get('current_prefs', '')), # Pass prefs via lambda
"run_generate_deployment_feedback"
),
"run_generate_deployment_feedback": (SDLC.generate_deployment_feedback, "collect_deployment_human_feedback"),
"run_refine_deployment": (SDLC.refine_deployment, "collect_deployment_decision"),
}
# ==============================================================================
# --- Main Execution Logic ---
# Checks the current stage and runs the corresponding backend function if it's a "run_" stage.
# ==============================================================================
if st.session_state.get('config_applied', False):
current_stage_to_run = st.session_state.stage # Get the current stage
# Check if the stage indicates a background processing step
if current_stage_to_run.startswith("run_"):
if current_stage_to_run in workflow_map:
# Retrieve the function and the next UI stage from the map
func_to_execute, next_ui_stage = workflow_map[current_stage_to_run]
# Call the central execution function
run_workflow_step(func_to_execute, next_ui_stage)
else:
# This indicates a potential error in the workflow definition or state
st.error(f"Internal Error: Unknown processing stage '{current_stage_to_run}' encountered. Workflow cannot proceed. Please restart.")
logger.critical(f"Workflow halted at unknown 'run_' stage: {current_stage_to_run}. Check workflow_map definition.")
# Optionally force a reset or stop execution
# initialize_state()
# st.rerun()
st.stop()
# elif current_stage_to_run == "END":
# Handled within the main column display logic
# pass # No processing needed for END stage
# else:
# Stage is likely an input/decision stage, handled by the UI widgets above
# pass
# Display warning if configuration hasn't been applied, unless at the very start
elif st.session_state.stage != "initial_setup":
logger.warning("Workflow cannot proceed because configuration has not been applied.")
# Warning is already displayed in the main column section