Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import numpy as np | |
import json | |
from huggingface_hub import hf_hub_download | |
# Import necessary model libraries | |
import segmentation_models_pytorch as smp | |
import timm | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
from torchvision import transforms | |
# --- 1. SETUP: Download and Load all models and data --- | |
print("--> Initializing application and downloading models...") | |
DEVICE = "cpu" | |
# --- Download and Load Segmentation Model (UNet) --- | |
try: | |
SEG_REPO_ID = "sheikh987/unet-isic2018" | |
SEG_MODEL_FILENAME = "unet_full_data_best_model.pth" | |
print(f"--> Downloading segmentation model from: {SEG_REPO_ID}") | |
seg_model_path = hf_hub_download(repo_id=SEG_REPO_ID, filename=SEG_MODEL_FILENAME) | |
segmentation_model = smp.Unet(encoder_name="resnet34", encoder_weights=None, in_channels=3, classes=1).to(DEVICE) | |
segmentation_model.load_state_dict(torch.load(seg_model_path, map_location=DEVICE)) | |
segmentation_model.eval() | |
print(" Segmentation model loaded successfully.") | |
except Exception as e: | |
print(f"!!! ERROR loading segmentation model: {e}") | |
raise gr.Error("Failed to load the segmentation model. Check repository name and file paths.") | |
# --- Download and Load Classification Model (EfficientNet) --- | |
try: | |
CLASS_REPO_ID = "sheikh987/efficientnet-isic" | |
CLASS_MODEL_FILENAME = "efficientnet_augmented_best.pth" | |
print(f"--> Downloading classification model from: {CLASS_REPO_ID}") | |
class_model_path = hf_hub_download(repo_id=CLASS_REPO_ID, filename=CLASS_MODEL_FILENAME) | |
NUM_CLASSES = 7 | |
classification_model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=NUM_CLASSES).to(DEVICE) | |
classification_model.load_state_dict(torch.load(class_model_path, map_location=DEVICE)) | |
classification_model.eval() | |
print(" Classification model loaded successfully.") | |
except Exception as e: | |
print(f"!!! ERROR loading classification model: {e}") | |
raise gr.Error("Failed to load the classification model. Check repository name and file paths.") | |
# --- Load Knowledge Base and Labels --- | |
try: | |
with open('knowledge_base.json', 'r') as f: | |
knowledge_base = json.load(f) | |
print("--> Knowledge base loaded.") | |
except FileNotFoundError: | |
raise gr.Error("knowledge_base.json not found. Make sure it has been uploaded to the Space.") | |
idx_to_class_abbr = {0: 'MEL', 1: 'NV', 2: 'BCC', 3: 'AKIEC', 4: 'BKL', 5: 'DF', 6: 'VASC'} | |
# --- Define Image Transforms --- | |
transform_segment = A.Compose([ | |
A.Resize(height=256, width=256), | |
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0), | |
ToTensorV2(), | |
]) | |
transform_classify = transforms.Compose([ | |
transforms.Resize((300, 300)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
print("\n--> Application ready to accept requests.") | |
# --- 2. DEFINE THE FULL PIPELINE FUNCTION (UPDATED) --- | |
def full_pipeline(input_image): | |
if input_image is None: | |
return None, None, "Please upload an image." | |
image_np = np.array(input_image.convert("RGB")) | |
# STAGE 1: SEGMENTATION | |
augmented_seg = transform_segment(image=image_np) | |
seg_input_tensor = augmented_seg['image'].unsqueeze(0).to(DEVICE) | |
with torch.no_grad(): | |
seg_logits = segmentation_model(seg_input_tensor) | |
seg_mask = (torch.sigmoid(seg_logits) > 0.5).float().squeeze().cpu().numpy() | |
if seg_mask.sum() < 200: | |
return None, None, "Analysis Failed: No lesion could be clearly identified." | |
# STAGE 2: CROP and CLASSIFY | |
rows = np.any(seg_mask, axis=1) | |
cols = np.any(seg_mask, axis=0) | |
rmin, rmax = np.where(rows)[0][[0, -1]] | |
cmin, cmax = np.where(cols)[0][[0, -1]] | |
padding = 15 | |
rmin, rmax = max(0, rmin - padding), min(image_np.shape[0], rmax + padding) | |
cmin, cmax = max(0, cmin - padding), min(image_np.shape[1], cmax + padding) | |
cropped_image_pil = Image.fromarray(image_np[rmin:rmax, cmin:cmax]) | |
class_input_tensor = transform_classify(cropped_image_pil).unsqueeze(0).to(DEVICE) | |
with torch.no_grad(): | |
class_logits = classification_model(class_input_tensor) | |
probabilities = torch.nn.functional.softmax(class_logits, dim=1) | |
confidence, predicted_idx = torch.max(probabilities, 1) | |
confidence_percent = confidence.item() * 100 | |
# SAFETY NET | |
CONFIDENCE_THRESHOLD = 50.0 | |
if confidence_percent < CONFIDENCE_THRESHOLD: | |
inconclusive_text = ( | |
f"**Analysis Inconclusive**\n\n" | |
f"The AI model's confidence ({confidence_percent:.2f}%) is below the required threshold of {CONFIDENCE_THRESHOLD}%.\n\n" | |
"This can happen if the image is blurry, has poor lighting, or shows a condition the model was not trained on.\n\n" | |
"**--- IMPORTANT DISCLAIMER ---**\n" | |
"This is NOT a diagnosis. Please consult a qualified dermatologist for an accurate assessment." | |
) | |
mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8)) | |
return mask_display, cropped_image_pil, inconclusive_text | |
# --- STAGE 3: LOOKUP and FORMAT (UPDATED) --- | |
predicted_abbr = idx_to_class_abbr[predicted_idx.item()] | |
info = knowledge_base.get(predicted_abbr, {}) | |
# Format the 'causes' and 'treatments' lists into clean, bulleted strings | |
causes_list = info.get('causes', ['Specific causes not listed.']) | |
causes_text = "\n".join([f"• {c}" for c in causes_list]) | |
treatments_list = info.get('common_treatments', ['No specific treatments listed.']) | |
treatments_text = "\n".join([f"• {t}" for t in treatments_list]) | |
# Build the final output text using all the information | |
info_text = ( | |
f"**Predicted Condition:** {info.get('full_name', 'N/A')} ({predicted_abbr})\n" | |
f"**Confidence:** {confidence_percent:.2f}%\n\n" | |
f"**Description:**\n{info.get('description', 'No description available.')}\n\n" | |
f"**Common Causes:**\n{causes_text}\n\n" | |
f"**Common Treatments:**\n{treatments_text}\n\n" | |
f"**--- IMPORTANT DISCLAIMER ---**\n{info.get('disclaimer', '')}" | |
) | |
mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8)) | |
return mask_display, cropped_image_pil, info_text | |
# --- 3. CREATE AND LAUNCH THE GRADIO INTERFACE --- | |
iface = gr.Interface( | |
fn=full_pipeline, | |
inputs=gr.Image(type="pil", label="Upload Skin Image"), | |
outputs=[ | |
gr.Image(type="pil", label="Segmentation Mask"), | |
gr.Image(type="pil", label="Cropped Lesion"), | |
gr.Markdown(label="Analysis Result") | |
], | |
title="AI Skin Lesion Analyzer", | |
description="This tool performs a two-stage analysis on a skin lesion image. **Stage 1:** A UNet model segments the lesion. **Stage 2:** An EfficientNet model classifies the segmented lesion. \n\n**DISCLAIMER:** This is an educational tool and is NOT a substitute for professional medical advice. Always consult a qualified dermatologist for any health concerns.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch() |