File size: 29,417 Bytes
38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 49c9e15 38b2ece 49c9e15 8c4798d 38b2ece 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 8c4798d 49c9e15 38b2ece 8c4798d 38b2ece 49c9e15 8c4798d 49c9e15 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 38b2ece 8c4798d 49c9e15 8c4798d 38b2ece 8c4798d 38b2ece 49c9e15 38b2ece 49c9e15 8c4798d 49c9e15 38b2ece 8c4798d 38b2ece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
import gradio as gr
import base64
import io
import os
from openai import OpenAI
import PyPDF2
from PIL import Image
import speech_recognition as sr
import tempfile
import cv2
import numpy as np
from typing import List, Tuple, Optional
import json
import pydub
from pydub import AudioSegment
class MultimodalChatbot:
def __init__(self, api_key: str):
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
self.model = "google/gemma-3n-e2b-it:free"
self.conversation_history = []
def encode_image_to_base64(self, image) -> str:
"""Convert PIL Image to base64 string"""
try:
if isinstance(image, str):
# If it's a file path
with open(image, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
else:
# If it's a PIL Image
buffered = io.BytesIO()
# Convert to RGB if it's RGBA
if image.mode == 'RGBA':
image = image.convert('RGB')
image.save(buffered, format="JPEG", quality=85)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
return f"Error encoding image: {str(e)}"
def extract_pdf_text(self, pdf_file) -> str:
"""Extract text from PDF file"""
try:
if hasattr(pdf_file, 'name'):
# Gradio file object
pdf_path = pdf_file.name
else:
pdf_path = pdf_file
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
return text.strip() if text.strip() else "No text could be extracted from this PDF."
except Exception as e:
return f"Error extracting PDF: {str(e)}"
def convert_audio_to_wav(self, audio_file) -> str:
"""Convert audio file to WAV format for speech recognition"""
try:
if hasattr(audio_file, 'name'):
audio_path = audio_file.name
else:
audio_path = audio_file
# Get file extension
file_ext = os.path.splitext(audio_path)[1].lower()
# If already WAV, return as is
if file_ext == '.wav':
return audio_path
# Convert to WAV using pydub
audio = AudioSegment.from_file(audio_path)
# Export as WAV with proper settings for speech recognition
wav_path = tempfile.mktemp(suffix='.wav')
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
return wav_path
except Exception as e:
raise Exception(f"Error converting audio: {str(e)}")
def transcribe_audio(self, audio_file) -> str:
"""Transcribe audio file to text"""
try:
recognizer = sr.Recognizer()
# Convert audio to WAV format
wav_path = self.convert_audio_to_wav(audio_file)
with sr.AudioFile(wav_path) as source:
# Adjust for ambient noise
recognizer.adjust_for_ambient_noise(source, duration=0.2)
audio_data = recognizer.record(source)
# Try Google Speech Recognition
try:
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Could not understand the audio. Please try with clearer audio."
except sr.RequestError as e:
# Fallback to offline recognition if available
try:
text = recognizer.recognize_sphinx(audio_data)
return text
except:
return f"Speech recognition service error: {str(e)}"
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def process_video(self, video_file) -> Tuple[List[str], str]:
"""Extract frames from video and convert to base64"""
try:
if hasattr(video_file, 'name'):
video_path = video_file.name
else:
video_path = video_file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return [], "Error: Could not open video file"
frames = []
frame_descriptions = []
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Extract frames (every 60 frames or every 2 seconds)
frame_interval = max(60, int(fps * 2)) if fps > 0 else 60
while cap.read()[0] and len(frames) < 5: # Limit to 5 frames
ret, frame = cap.read()
if ret and frame_count % frame_interval == 0:
# Convert BGR to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(rgb_frame)
# Resize image to reduce size
pil_image.thumbnail((800, 600), Image.Resampling.LANCZOS)
base64_frame = self.encode_image_to_base64(pil_image)
if not base64_frame.startswith("Error"):
frames.append(base64_frame)
timestamp = frame_count / fps if fps > 0 else frame_count
frame_descriptions.append(f"Frame at {timestamp:.1f}s")
frame_count += 1
cap.release()
description = f"Video processed: {len(frames)} frames extracted from {total_frames} total frames"
return frames, description
except Exception as e:
return [], f"Error processing video: {str(e)}"
def create_multimodal_message(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None) -> dict:
"""Create a multimodal message for the API"""
content_parts = []
processing_info = []
# Add text content
if text_input:
content_parts.append({"type": "text", "text": text_input})
# Process PDF
if pdf_file is not None:
pdf_text = self.extract_pdf_text(pdf_file)
content_parts.append({
"type": "text",
"text": f"PDF Content:\n{pdf_text}"
})
processing_info.append("π PDF processed")
# Process Audio
if audio_file is not None:
audio_text = self.transcribe_audio(audio_file)
content_parts.append({
"type": "text",
"text": f"Audio Transcription:\n{audio_text}"
})
processing_info.append("π€ Audio transcribed")
# Process Image - Use text-only approach since vision isn't supported
if image_file is not None:
# Since vision isn't supported, we'll describe what we can about the image
if hasattr(image_file, 'size'):
width, height = image_file.size
mode = image_file.mode
content_parts.append({
"type": "text",
"text": f"Image uploaded: {width}x{height} pixels, mode: {mode}. Note: Visual analysis not available with current model configuration."
})
else:
content_parts.append({
"type": "text",
"text": "Image uploaded. Note: Visual analysis not available with current model configuration."
})
processing_info.append("πΌοΈ Image received (metadata only)")
# Process Video - Use text-only approach since vision isn't supported
if video_file is not None:
frames, video_desc = self.process_video(video_file)
content_parts.append({
"type": "text",
"text": f"Video uploaded: {video_desc}. Note: Visual analysis not available with current model configuration."
})
processing_info.append("π₯ Video processed (metadata only)")
return {"role": "user", "content": content_parts}, processing_info
def chat(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None,
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
"""Main chat function"""
if history is None:
history = []
try:
# Create user message summary for display
user_message_parts = []
if text_input:
user_message_parts.append(f"Text: {text_input}")
if pdf_file:
user_message_parts.append("π PDF uploaded")
if audio_file:
user_message_parts.append("π€ Audio uploaded")
if image_file:
user_message_parts.append("πΌοΈ Image uploaded")
if video_file:
user_message_parts.append("π₯ Video uploaded")
user_display = " | ".join(user_message_parts)
# Create multimodal message
user_message, processing_info = self.create_multimodal_message(
text_input, pdf_file, audio_file, image_file, video_file
)
# Add processing info to display
if processing_info:
user_display += f"\n{' | '.join(processing_info)}"
# Add to conversation history
messages = [user_message]
# Get response from Gemma
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://multimodal-chatbot.local",
"X-Title": "Multimodal Chatbot",
},
model=self.model,
messages=messages,
max_tokens=2048,
temperature=0.7
)
bot_response = completion.choices[0].message.content
# Update history
history.append((user_display, bot_response))
return history, ""
except Exception as e:
error_msg = f"Error: {str(e)}"
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
return history, ""
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ Multimodal Chatbot with Gemma 3n
This chatbot can process multiple types of input:
- **Text**: Regular text messages
- **PDF**: Extract and analyze document content
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
- **Images**: Upload images (metadata analysis only due to model limitations)
- **Video**: Upload videos (metadata analysis only due to model limitations)
**Setup**: Enter your OpenRouter API key below to get started
""")
# API Key Input Section
with gr.Row():
with gr.Column():
api_key_input = gr.Textbox(
label="π OpenRouter API Key",
placeholder="Enter your OpenRouter API key here...",
type="password",
info="Your API key is not stored and only used for this session"
)
api_status = gr.Textbox(
label="Connection Status",
value="β API Key not provided",
interactive=False
)
# Tabbed Interface
with gr.Tabs():
# Text Chat Tab
with gr.TabItem("π¬ Text Chat"):
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="π¬ Text Input",
placeholder="Type your message here...",
lines=5
)
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
text_chatbot = gr.Chatbot(
label="Text Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# PDF Chat Tab
with gr.TabItem("π PDF Chat"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="π PDF Upload",
file_types=[".pdf"],
type="filepath"
)
pdf_text_input = gr.Textbox(
label="π¬ Question about PDF",
placeholder="Ask something about the PDF...",
lines=3
)
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
pdf_chatbot = gr.Chatbot(
label="PDF Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# Audio Chat Tab
with gr.TabItem("π€ Audio Chat"):
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.File(
label="π€ Audio Upload",
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
type="filepath"
)
audio_text_input = gr.Textbox(
label="π¬ Question about Audio",
placeholder="Ask something about the audio...",
lines=3
)
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
audio_chatbot = gr.Chatbot(
label="Audio Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# Image Chat Tab
with gr.TabItem("πΌοΈ Image Chat"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="πΌοΈ Image Upload",
type="pil"
)
image_text_input = gr.Textbox(
label="π¬ Question about Image",
placeholder="Ask something about the image...",
lines=3
)
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
image_chatbot = gr.Chatbot(
label="Image Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# Video Chat Tab
with gr.TabItem("π₯ Video Chat"):
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(
label="π₯ Video Upload",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
video_text_input = gr.Textbox(
label="π¬ Question about Video",
placeholder="Ask something about the video...",
lines=3
)
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
video_chatbot = gr.Chatbot(
label="Video Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# Combined Chat Tab
with gr.TabItem("π Combined Chat"):
with gr.Row():
with gr.Column(scale=1):
combined_text_input = gr.Textbox(
label="π¬ Text Input",
placeholder="Type your message here...",
lines=3
)
combined_pdf_input = gr.File(
label="π PDF Upload",
file_types=[".pdf"],
type="filepath"
)
combined_audio_input = gr.File(
label="π€ Audio Upload",
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
type="filepath"
)
combined_image_input = gr.Image(
label="πΌοΈ Image Upload",
type="pil"
)
combined_video_input = gr.File(
label="π₯ Video Upload",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=2):
combined_chatbot = gr.Chatbot(
label="Combined Chat History",
height=600,
bubble_full_width=False,
show_copy_button=True
)
# Event handlers
def validate_api_key(api_key):
if not api_key or len(api_key.strip()) == 0:
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(6)]
try:
# Test the API key by creating a client
test_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key.strip(),
)
return "β
API Key validated successfully", *[gr.update(interactive=True) for _ in range(6)]
except Exception as e:
return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(6)]
def process_text_input(api_key, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, history=history)
def process_pdf_input(api_key, pdf, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
def process_audio_input(api_key, audio, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, audio_file=audio, history=history)
def process_image_input(api_key, image, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, image_file=image, history=history)
def process_video_input(api_key, video, text, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text_input=text, video_file=video, history=history)
def process_combined_input(api_key, text, pdf, audio, image, video, history):
if not api_key or len(api_key.strip()) == 0:
if history is None:
history = []
history.append(("Error", "β Please provide a valid API key first"))
return history, ""
chatbot = MultimodalChatbot(api_key.strip())
return chatbot.chat(text, pdf, audio, image, video, history)
def clear_chat():
return [], ""
def clear_all_inputs():
return [], "", None, None, None, None
# API Key validation
api_key_input.change(
validate_api_key,
inputs=[api_key_input],
outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn,
image_submit_btn, video_submit_btn, combined_submit_btn]
)
# Text chat events
text_submit_btn.click(
process_text_input,
inputs=[api_key_input, text_input, text_chatbot],
outputs=[text_chatbot, text_input]
)
text_input.submit(
process_text_input,
inputs=[api_key_input, text_input, text_chatbot],
outputs=[text_chatbot, text_input]
)
text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input])
# PDF chat events
pdf_submit_btn.click(
process_pdf_input,
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
outputs=[pdf_chatbot, pdf_text_input]
)
pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input])
# Audio chat events
audio_submit_btn.click(
process_audio_input,
inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot],
outputs=[audio_chatbot, audio_text_input]
)
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
# Image chat events
image_submit_btn.click(
process_image_input,
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
outputs=[image_chatbot, image_text_input]
)
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
# Video chat events
video_submit_btn.click(
process_video_input,
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
outputs=[video_chatbot, video_text_input]
)
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
# Combined chat events
combined_submit_btn.click(
process_combined_input,
inputs=[api_key_input, combined_text_input, combined_pdf_input,
combined_audio_input, combined_image_input, combined_video_input, combined_chatbot],
outputs=[combined_chatbot, combined_text_input]
)
combined_clear_btn.click(clear_all_inputs,
outputs=[combined_chatbot, combined_text_input, combined_pdf_input,
combined_audio_input, combined_image_input, combined_video_input])
# Examples and Instructions
gr.Markdown("""
### π― How to Use Each Tab:
**π¬ Text Chat**: Simple text conversations with the AI
**π PDF Chat**: Upload a PDF and ask questions about its content
**π€ Audio Chat**: Upload audio files for transcription and analysis
- Supports: WAV, MP3, M4A, FLAC, OGG formats
- Best results with clear speech and minimal background noise
**πΌοΈ Image Chat**: Upload images (currently metadata only due to model limitations)
**π₯ Video Chat**: Upload videos (currently metadata only due to model limitations)
**π Combined Chat**: Use multiple input types together for comprehensive analysis
### π Getting an API Key:
1. Go to [OpenRouter.ai](https://openrouter.ai)
2. Sign up for an account
3. Navigate to the API Keys section
4. Create a new API key
5. Copy and paste it in the field above
### β οΈ Current Limitations:
- Image and video visual analysis not supported by the free Gemma 3n model
- Audio transcription requires internet connection for best results
- Large files may take longer to process
""")
return demo
if __name__ == "__main__":
# Required packages (install with pip):
required_packages = [
"gradio",
"openai",
"PyPDF2",
"Pillow",
"SpeechRecognition",
"opencv-python",
"numpy",
"pydub"
]
print("π Multimodal Chatbot with Gemma 3n")
print("=" * 50)
print("Required packages:", ", ".join(required_packages))
print("\nπ¦ To install: pip install " + " ".join(required_packages))
print("\nπ€ For audio processing, you may also need:")
print(" - ffmpeg (for audio conversion)")
print(" - sudo apt-get install espeak espeak-data libespeak1 libespeak-dev (for offline speech recognition)")
print("\nπ Get your API key from: https://openrouter.ai")
print("π‘ Enter your API key in the web interface when it loads")
demo = create_interface()
demo.launch(
share=True
) |