Spaces:
Sleeping
Sleeping
import os | |
import json | |
import time | |
import gradio as gr | |
from datetime import datetime | |
from typing import List, Dict, Any, Optional, Union | |
import threading | |
import re | |
import aiohttp | |
import asyncio | |
# Import Groq | |
from groq import Groq | |
class ChutesClient: | |
"""Client for interacting with Chutes API""" | |
def __init__(self, api_key: str): | |
self.api_key = api_key or "" | |
self.base_url = "https://llm.chutes.ai/v1" | |
async def chat_completions_create(self, **kwargs) -> Dict: | |
"""Make async request to Chutes chat completions endpoint""" | |
headers = { | |
"Authorization": f"Bearer {self.api_key}", | |
"Content-Type": "application/json" | |
} | |
# Prepare the body for Chutes API | |
body = { | |
"model": kwargs.get("model", "openai/gpt-oss-20b"), | |
"messages": kwargs.get("messages", []), | |
"stream": kwargs.get("stream", False), | |
"max_tokens": kwargs.get("max_tokens", 1024), | |
"temperature": kwargs.get("temperature", 0.7) | |
} | |
async with aiohttp.ClientSession() as session: | |
if body["stream"]: | |
# Handle streaming response | |
async with session.post( | |
f"{self.base_url}/chat/completions", | |
headers=headers, | |
json=body | |
) as response: | |
if response.status != 200: | |
raise Exception(f"Chutes API error: {await response.text()}") | |
content = "" | |
async for line in response.content: | |
line = line.decode("utf-8").strip() | |
if line.startswith("data: "): | |
data = line[6:] | |
if data == "[DONE]": | |
break | |
try: | |
if data.strip(): | |
chunk_json = json.loads(data) | |
if "choices" in chunk_json and len(chunk_json["choices"]) > 0: | |
delta = chunk_json["choices"][0].get("delta", {}) | |
if "content" in delta and delta["content"]: | |
content += str(delta["content"]) | |
except json.JSONDecodeError: | |
continue | |
# Return in OpenAI format for compatibility | |
return { | |
"choices": [{ | |
"message": { | |
"content": content, | |
"role": "assistant" | |
} | |
}] | |
} | |
else: | |
# Handle non-streaming response | |
async with session.post( | |
f"{self.base_url}/chat/completions", | |
headers=headers, | |
json=body | |
) as response: | |
if response.status != 200: | |
raise Exception(f"Chutes API error: {await response.text()}") | |
return await response.json() | |
class CreativeAgenticAI: | |
""" | |
Creative Agentic AI Chat Tool using Groq and Chutes models with browser search and compound models | |
""" | |
def __init__(self, groq_api_key: str, chutes_api_key: str, model: str = "compound-beta"): | |
""" | |
Initialize the Creative Agentic AI system. | |
Args: | |
groq_api_key: Groq API key | |
chutes_api_key: Chutes API key | |
model: Which model to use | |
""" | |
self.groq_api_key = str(groq_api_key) if groq_api_key else "" | |
self.chutes_api_key = str(chutes_api_key) if chutes_api_key else "" | |
if not self.groq_api_key and model != "openai/gpt-oss-20b": | |
raise ValueError("No Groq API key provided") | |
if not self.chutes_api_key and model == "openai/gpt-oss-20b": | |
raise ValueError("No Chutes API key provided") | |
self.model = str(model) if model else "compound-beta" | |
self.groq_client = Groq(api_key=self.groq_api_key) if self.groq_api_key else None | |
self.chutes_client = ChutesClient(api_key=self.chutes_api_key) if self.chutes_api_key else None | |
self.conversation_history = [] | |
# Available models with their capabilities | |
self.available_models = { | |
"compound-beta": {"supports_web_search": True, "supports_browser_search": False, "api": "groq"}, | |
"compound-beta-mini": {"supports_web_search": True, "supports_browser_search": False, "api": "groq"}, | |
"openai/gpt-oss-20b": {"supports_web_search": False, "supports_browser_search": False, "api": "chutes"}, | |
} | |
async def chat(self, message: str, | |
include_domains: List[str] = None, | |
exclude_domains: List[str] = None, | |
system_prompt: str = None, | |
temperature: float = 0.7, | |
max_tokens: int = 1024, | |
search_type: str = "auto", | |
force_search: bool = False) -> Dict: | |
""" | |
Send a message to the AI and get a response with flexible search options | |
Args: | |
message: User's message | |
include_domains: List of domains to include for web search | |
exclude_domains: List of domains to exclude from web search | |
system_prompt: Custom system prompt | |
temperature: Model temperature (0.0-2.0) | |
max_tokens: Maximum tokens in response | |
search_type: 'web_search', 'browser_search', 'auto', or 'none' | |
force_search: Force the AI to use search tools | |
Returns: | |
AI response with metadata | |
""" | |
# Safe string conversion | |
message = str(message) if message else "" | |
system_prompt = str(system_prompt) if system_prompt else "" | |
search_type = str(search_type) if search_type else "auto" | |
# Enhanced system prompt for better behavior | |
if not system_prompt: | |
if self.model == "openai/gpt-oss-20b": | |
# Simple, direct system prompt for Chutes model | |
system_prompt = """You are a helpful, knowledgeable AI assistant. Provide direct, clear, complete and informative responses to user questions. Be concise but thorough. Do not include internal reasoning or commentary - just give the answer the user is looking for. Please also cite the source urls from where you got the informations.""" | |
else: | |
# Enhanced system prompt for Groq models with search capabilities | |
citation_instruction = """ | |
IMPORTANT: When you search the web and find information, you MUST: | |
1. Always cite your sources with clickable links in this format: [Source Title](URL) | |
2. Include multiple diverse sources when possible | |
3. Show which specific websites you used for each claim | |
4. At the end of your response, provide a "Sources Used" section with all the links | |
5. Be transparent about which information comes from which source | |
""" | |
domain_context = "" | |
if include_domains and self._supports_web_search(): | |
safe_domains = [str(d) for d in include_domains if d] | |
domain_context = f"\nYou are restricted to searching ONLY these domains: {', '.join(safe_domains)}. Make sure to find and cite sources specifically from these domains." | |
elif exclude_domains and self._supports_web_search(): | |
safe_domains = [str(d) for d in exclude_domains if d] | |
domain_context = f"\nAvoid searching these domains: {', '.join(safe_domains)}. Search everywhere else on the web." | |
search_instruction = "" | |
if search_type == "browser_search" and self._supports_browser_search(): | |
search_instruction = "\nUse browser search tools to find the most current and relevant information from the web." | |
elif search_type == "web_search": | |
search_instruction = "\nUse web search capabilities to find relevant information." | |
elif force_search: | |
if self._supports_browser_search(): | |
search_instruction = "\nYou MUST use search tools to find current information before responding." | |
elif self._supports_web_search(): | |
search_instruction = "\nYou MUST use web search to find current information before responding." | |
system_prompt = f"""You are a creative and intelligent AI assistant with agentic capabilities. | |
You can search the web, analyze information, and provide comprehensive responses. | |
Be helpful, creative, and engaging while maintaining accuracy. | |
{citation_instruction} | |
{domain_context} | |
{search_instruction} | |
Your responses should be well-structured, informative, and properly cited with working links.""" | |
# Build messages | |
messages = [{"role": "system", "content": system_prompt}] | |
messages.extend(self.conversation_history[-20:]) | |
# Enhanced message for domain filtering (only for Groq models) | |
enhanced_message = message | |
if (include_domains or exclude_domains) and self._supports_web_search(): | |
filter_context = [] | |
if include_domains: | |
safe_domains = [str(d) for d in include_domains if d] | |
if safe_domains: | |
filter_context.append(f"ONLY search these domains: {', '.join(safe_domains)}") | |
if exclude_domains: | |
safe_domains = [str(d) for d in exclude_domains if d] | |
if safe_domains: | |
filter_context.append(f"EXCLUDE these domains: {', '.join(safe_domains)}") | |
if filter_context: | |
enhanced_message += f"\n\n[Domain Filtering: {' | '.join(filter_context)}]" | |
messages.append({"role": "user", "content": enhanced_message}) | |
# Set up API parameters | |
params = { | |
"messages": messages, | |
"model": self.model, | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
} | |
# Add domain filtering for compound models (Groq only) | |
if self._supports_web_search(): | |
if include_domains: | |
safe_domains = [str(d).strip() for d in include_domains if d and str(d).strip()] | |
if safe_domains: | |
params["include_domains"] = safe_domains | |
if exclude_domains: | |
safe_domains = [str(d).strip() for d in exclude_domains if d and str(d).strip()] | |
if safe_domains: | |
params["exclude_domains"] = safe_domains | |
# Add tools only for Groq models that support browser search | |
tools = [] | |
tool_choice = None | |
if self._supports_browser_search(): | |
if search_type in ["browser_search", "auto"] or force_search: | |
tools = [{"type": "browser_search", "function": {"name": "browser_search"}}] | |
tool_choice = "required" if force_search else "auto" | |
if tools: | |
params["tools"] = tools | |
params["tool_choice"] = tool_choice | |
try: | |
# Make the API call based on model | |
if self.available_models[self.model]["api"] == "chutes": | |
# Use streaming for better response quality | |
params["stream"] = True | |
response = await self.chutes_client.chat_completions_create(**params) | |
# Handle Chutes response | |
content = "" | |
if response and "choices" in response and response["choices"]: | |
message_content = response["choices"][0].get("message", {}).get("content") | |
content = str(message_content) if message_content else "No response content" | |
else: | |
content = "No response received" | |
tool_calls = None | |
else: | |
# Groq API call | |
params["max_completion_tokens"] = params.pop("max_tokens", None) | |
response = self.groq_client.chat.completions.create(**params) | |
content = "" | |
if response and response.choices and response.choices[0].message: | |
message_content = response.choices[0].message.content | |
content = str(message_content) if message_content else "No response content" | |
else: | |
content = "No response received" | |
tool_calls = response.choices[0].message.tool_calls if hasattr(response.choices[0].message, "tool_calls") else None | |
# Extract tool usage information | |
tool_info = self._extract_tool_info(response, tool_calls) | |
# Process content to enhance citations | |
processed_content = self._enhance_citations(content, tool_info) | |
# Add to conversation history | |
self.conversation_history.append({"role": "user", "content": message}) | |
self.conversation_history.append({"role": "assistant", "content": processed_content}) | |
return { | |
"content": processed_content, | |
"timestamp": datetime.now().isoformat(), | |
"model": self.model, | |
"tool_usage": tool_info, | |
"search_type_used": search_type, | |
"parameters": { | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
"include_domains": include_domains, | |
"exclude_domains": exclude_domains, | |
"force_search": force_search | |
} | |
} | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
self.conversation_history.append({"role": "user", "content": message}) | |
self.conversation_history.append({"role": "assistant", "content": error_msg}) | |
return { | |
"content": error_msg, | |
"timestamp": datetime.now().isoformat(), | |
"model": self.model, | |
"tool_usage": None, | |
"error": str(e) | |
} | |
def _supports_web_search(self) -> bool: | |
"""Check if current model supports web search (compound models)""" | |
return self.available_models.get(self.model, {}).get("supports_web_search", False) | |
def _supports_browser_search(self) -> bool: | |
"""Check if current model supports browser search tools""" | |
return self.available_models.get(self.model, {}).get("supports_browser_search", False) | |
def _extract_tool_info(self, response, tool_calls) -> Dict: | |
"""Extract tool usage information in a JSON serializable format""" | |
tool_info = { | |
"tools_used": [], | |
"search_queries": [], | |
"sources_found": [] | |
} | |
# Handle Groq executed_tools | |
if hasattr(response, 'choices') and hasattr(response.choices[0].message, 'executed_tools'): | |
tools = response.choices[0].message.executed_tools | |
if tools: | |
for tool in tools: | |
tool_dict = { | |
"tool_type": str(getattr(tool, "type", "unknown")), | |
"tool_name": str(getattr(tool, "name", "unknown")), | |
} | |
if hasattr(tool, "input"): | |
tool_input = getattr(tool, "input") | |
tool_input_str = str(tool_input) if tool_input is not None else "" | |
tool_dict["input"] = tool_input_str | |
if "search" in tool_dict["tool_name"].lower(): | |
tool_info["search_queries"].append(tool_input_str) | |
if hasattr(tool, "output"): | |
tool_output = getattr(tool, "output") | |
tool_output_str = str(tool_output) if tool_output is not None else "" | |
tool_dict["output"] = tool_output_str | |
urls = self._extract_urls(tool_output_str) | |
tool_info["sources_found"].extend(urls) | |
tool_info["tools_used"].append(tool_dict) | |
# Handle tool_calls for both APIs | |
if tool_calls: | |
for tool_call in tool_calls: | |
tool_dict = { | |
"tool_type": str(getattr(tool_call, "type", "browser_search")), | |
"tool_name": "browser_search", | |
"tool_id": str(getattr(tool_call, "id", "")) if getattr(tool_call, "id", None) else "" | |
} | |
if hasattr(tool_call, "function") and tool_call.function: | |
tool_dict["tool_name"] = str(getattr(tool_call.function, "name", "browser_search")) | |
if hasattr(tool_call.function, "arguments"): | |
try: | |
args_raw = tool_call.function.arguments | |
if isinstance(args_raw, str): | |
args = json.loads(args_raw) | |
else: | |
args = args_raw or {} | |
tool_dict["arguments"] = args | |
if "query" in args: | |
tool_info["search_queries"].append(str(args["query"])) | |
except: | |
args_str = str(args_raw) if args_raw is not None else "" | |
tool_dict["arguments"] = args_str | |
tool_info["tools_used"].append(tool_dict) | |
return tool_info | |
def _extract_urls(self, text: str) -> List[str]: | |
"""Extract URLs from text""" | |
if not text: | |
return [] | |
text_str = str(text) | |
url_pattern = r'https?://[^\s<>"]{2,}' | |
urls = re.findall(url_pattern, text_str) | |
return list(set(urls)) | |
def _enhance_citations(self, content: str, tool_info: Dict) -> str: | |
"""Enhance content with better citation formatting""" | |
if not content: | |
return "" | |
content_str = str(content) | |
if not tool_info or not tool_info.get("sources_found"): | |
return content_str | |
if "Sources Used:" not in content_str and "sources:" not in content_str.lower(): | |
sources_section = "\n\n---\n\n### Sources Used:\n" | |
for i, url in enumerate(tool_info["sources_found"][:10], 1): | |
domain = self._extract_domain(str(url)) | |
sources_section += f"{i}. [{domain}]({url})\n" | |
content_str += sources_section | |
return content_str | |
def _extract_domain(self, url: str) -> str: | |
"""Extract domain name from URL for display""" | |
if not url: | |
return "" | |
url_str = str(url) | |
try: | |
if url_str.startswith(('http://', 'https://')): | |
domain = url_str.split('/')[2] | |
if domain.startswith('www.'): | |
domain = domain[4:] | |
return domain | |
return url_str | |
except: | |
return url_str | |
def get_model_info(self) -> Dict: | |
"""Get information about current model capabilities""" | |
return self.available_models.get(self.model, {}) | |
def clear_history(self): | |
"""Clear conversation history""" | |
self.conversation_history = [] | |
def get_history_summary(self) -> str: | |
"""Get a summary of conversation history""" | |
if not self.conversation_history: | |
return "No conversation history" | |
user_messages = [msg for msg in self.conversation_history if msg["role"] == "user"] | |
assistant_messages = [msg for msg in self.conversation_history if msg["role"] == "assistant"] | |
return f"Conversation: {len(user_messages)} user messages, {len(assistant_messages)} assistant responses" | |
# Global variables | |
ai_instance = None | |
api_key_status = "Not Set" | |
async def validate_api_keys(groq_api_key: str, chutes_api_key: str, model: str) -> str: | |
"""Validate both Groq and Chutes API keys and initialize AI instance""" | |
global ai_instance, api_key_status | |
# Handle None values and convert to strings | |
groq_api_key = str(groq_api_key) if groq_api_key else "" | |
chutes_api_key = str(chutes_api_key) if chutes_api_key else "" | |
model = str(model) if model else "compound-beta" | |
if model == "openai/gpt-oss-20b" and not chutes_api_key.strip(): | |
api_key_status = "Invalid β" | |
return "β Please enter a valid Chutes API key for the selected model" | |
if model in ["compound-beta", "compound-beta-mini"] and not groq_api_key.strip(): | |
api_key_status = "Invalid β" | |
return "β Please enter a valid Groq API key for the selected model" | |
try: | |
if model == "openai/gpt-oss-20b": | |
chutes_client = ChutesClient(api_key=chutes_api_key) | |
await chutes_client.chat_completions_create( | |
messages=[{"role": "user", "content": "Hello"}], | |
model=model, | |
max_tokens=10 | |
) | |
else: | |
groq_client = Groq(api_key=groq_api_key) | |
groq_client.chat.completions.create( | |
messages=[{"role": "user", "content": "Hello"}], | |
model=model, | |
max_tokens=10 | |
) | |
ai_instance = CreativeAgenticAI(groq_api_key=groq_api_key, chutes_api_key=chutes_api_key, model=model) | |
api_key_status = "Valid β " | |
model_info = ai_instance.get_model_info() | |
capabilities = [] | |
if model_info.get("supports_web_search"): | |
capabilities.append("π Web Search with Domain Filtering") | |
if model_info.get("supports_browser_search"): | |
capabilities.append("π Browser Search Tools") | |
cap_text = " | ".join(capabilities) if capabilities else "π¬ Chat Only" | |
return f"β API Keys Valid! NeuroScope AI is ready.\n\n**Model:** {model}\n**Capabilities:** {cap_text}\n**API:** {model_info.get('api', 'unknown')}\n**Status:** Connected and ready for chat!" | |
except Exception as e: | |
api_key_status = "Invalid β" | |
ai_instance = None | |
return f"β Error validating API key: {str(e)}\n\nPlease check your API keys and try again." | |
def update_model(model: str) -> str: | |
"""Update the model selection""" | |
global ai_instance | |
model = str(model) if model else "compound-beta" | |
if ai_instance: | |
ai_instance.model = model | |
model_info = ai_instance.get_model_info() | |
capabilities = [] | |
if model_info.get("supports_web_search"): | |
capabilities.append("π Web Search with Domain Filtering") | |
if model_info.get("supports_browser_search"): | |
capabilities.append("π Browser Search Tools") | |
cap_text = " | ".join(capabilities) if capabilities else "π¬ Chat Only" | |
return f"β Model updated to: **{model}**\n**Capabilities:** {cap_text}\n**API:** {model_info.get('api', 'unknown')}" | |
else: | |
return "β οΈ Please set your API keys first" | |
def get_search_options(model: str) -> gr.update: | |
"""Get available search options based on model""" | |
if not ai_instance: | |
return gr.update(choices=["none"], value="none") | |
model = str(model) if model else "compound-beta" | |
model_info = ai_instance.available_models.get(model, {}) | |
options = ["none"] | |
if model_info.get("supports_web_search"): | |
options.extend(["web_search", "auto"]) | |
if model_info.get("supports_browser_search"): | |
options.extend(["browser_search", "auto"]) | |
options = list(dict.fromkeys(options)) | |
default_value = "auto" if "auto" in options else "none" | |
return gr.update(choices=options, value=default_value) | |
async def chat_with_ai(message: str, | |
include_domains: str, | |
exclude_domains: str, | |
system_prompt: str, | |
temperature: float, | |
max_tokens: int, | |
search_type: str, | |
force_search: bool, | |
history: List) -> tuple: | |
"""Main chat function""" | |
global ai_instance | |
if not ai_instance: | |
error_msg = "β οΈ Please set your API keys first!" | |
history.append([str(message) if message else "", error_msg]) | |
return history, "" | |
# Convert all inputs to strings and handle None values | |
message = str(message) if message else "" | |
include_domains = str(include_domains) if include_domains else "" | |
exclude_domains = str(exclude_domains) if exclude_domains else "" | |
system_prompt = str(system_prompt) if system_prompt else "" | |
search_type = str(search_type) if search_type else "auto" | |
if not message.strip(): | |
return history, "" | |
include_list = [d.strip() for d in include_domains.split(",") if d.strip()] if include_domains.strip() else [] | |
exclude_list = [d.strip() for d in exclude_domains.split(",") if d.strip()] if exclude_domains.strip() else [] | |
try: | |
response = await ai_instance.chat( | |
message=message, | |
include_domains=include_list if include_list else None, | |
exclude_domains=exclude_list if exclude_list else None, | |
system_prompt=system_prompt if system_prompt.strip() else None, | |
temperature=temperature, | |
max_tokens=int(max_tokens), | |
search_type=search_type, | |
force_search=force_search | |
) | |
ai_response = str(response.get("content", "No response received")) | |
# Add tool usage info for Groq models | |
if response.get("tool_usage") and ai_instance.model != "openai/gpt-oss-20b": | |
tool_info = response["tool_usage"] | |
tool_summary = [] | |
if tool_info.get("search_queries"): | |
tool_summary.append(f"π Search queries: {len(tool_info['search_queries'])}") | |
if tool_info.get("sources_found"): | |
tool_summary.append(f"π Sources found: {len(tool_info['sources_found'])}") | |
if tool_info.get("tools_used"): | |
tool_types = [str(tool.get("tool_type", "unknown")) for tool in tool_info["tools_used"]] | |
unique_types = list(set(tool_types)) | |
tool_summary.append(f"π§ Tools used: {', '.join(unique_types)}") | |
if tool_summary: | |
ai_response += f"\n\n*{' | '.join(tool_summary)}*" | |
# Add search settings info | |
search_info = [] | |
if response.get("search_type_used") and str(response["search_type_used"]) != "none": | |
search_info.append(f"π Search type: {response['search_type_used']}") | |
if force_search: | |
search_info.append("β‘ Forced search enabled") | |
if include_list or exclude_list: | |
filter_info = [] | |
if include_list: | |
filter_info.append(f"β Included domains: {', '.join(include_list)}") | |
if exclude_list: | |
filter_info.append(f"β Excluded domains: {', '.join(exclude_list)}") | |
search_info.extend(filter_info) | |
if search_info and ai_instance.model != "openai/gpt-oss-20b": | |
ai_response += f"\n\n*π Search settings: {' | '.join(search_info)}*" | |
history.append([message, ai_response]) | |
return history, "" | |
except Exception as e: | |
error_msg = f"β Error: {str(e)}" | |
history.append([message, error_msg]) | |
return history, "" | |
def clear_chat_history(): | |
"""Clear the chat history""" | |
global ai_instance | |
if ai_instance: | |
ai_instance.clear_history() | |
return [] | |
def create_gradio_app(): | |
"""Create the main Gradio application""" | |
css = """ | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
.header { | |
text-align: center; | |
background: linear-gradient(to right, #00ff94, #00b4db); | |
color: white; | |
padding: 20px; | |
border-radius: 10px; | |
margin-bottom: 20px; | |
} | |
.status-box { | |
background-color: #f8f9fa; | |
border: 1px solid #dee2e6; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.example-box { | |
background-color: #e8f4fd; | |
border-left: 4px solid #007bff; | |
padding: 15px; | |
margin: 10px 0; | |
border-radius: 0 8px 8px 0; | |
} | |
.domain-info { | |
background-color: #fff3cd; | |
border: 1px solid #ffeaa7; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.citation-info { | |
background-color: #d1ecf1; | |
border: 1px solid #bee5eb; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.search-info { | |
background-color: #e2e3e5; | |
border: 1px solid #c6c8ca; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
#neuroscope-accordion { | |
background: linear-gradient(to right, #00ff94, #00b4db); | |
border-radius: 8px; | |
} | |
""" | |
with gr.Blocks(css=css, title="π€ Creative Agentic AI Chat", theme=gr.themes.Ocean()) as app: | |
gr.HTML(""" | |
<div class="header"> | |
<h1>π€ NeuroScope-AI Enhanced</h1> | |
<p>Powered by Groq and Chutes Models with Web Search and Agentic Capabilities</p> | |
</div> | |
""") | |
with gr.Group(): | |
with gr.Accordion("π€ NeuroScope AI Enhanced", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Enhanced with Multiple Search Capabilities:** | |
- π§ **Intelligence** (Neuro): Advanced AI reasoning across multiple models | |
- π **Precision Search** (Scope): Domain filtering (Groq models) | |
- π€ **AI Capabilities** (AI): Agentic behavior with tool usage | |
- β‘ **Dual APIs**: Web search (Groq) + Streaming chat (Chutes) | |
- π― **Model Flexibility**: Choose the right model for your task | |
""") | |
with gr.Group(): | |
with gr.Accordion("π IMPORTANT - Enhanced Search Capabilities!", open=True, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="search-info"> | |
<h3>π NEW: Multiple Search Types Available!</h3> | |
<h4>π Web Search Models (Groq API)</h4> | |
<ul> | |
<li><strong>compound-beta:</strong> Most powerful with domain filtering</li> | |
<li><strong>compound-beta-mini:</strong> Faster with domain filtering</li> | |
<li><strong>Features:</strong> Include/exclude domains, autonomous web search</li> | |
</ul> | |
<h4>π¬ Chat Model (Chutes API)</h4> | |
<ul> | |
<li><strong>openai/gpt-oss-20b:</strong> Fast conversational capabilities with streaming</li> | |
<li><strong>Features:</strong> General chat, streaming responses, no web search</li> | |
</ul> | |
</div> | |
<div class="citation-info"> | |
<h3>π Enhanced Citation System</h3> | |
<p>Groq models include:</p> | |
<ul> | |
<li><strong>Automatic Source Citations:</strong> Clickable links to sources</li> | |
<li><strong>Sources Used Section:</strong> Dedicated section showing all websites</li> | |
<li><strong>Search Type Indication:</strong> Shows which search method was used</li> | |
</ul> | |
<p><strong>Chutes models:</strong> Direct conversational responses without web search</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
groq_api_key = gr.Textbox( | |
label="π Groq API Key", | |
placeholder="Enter your Groq API key here...", | |
type="password", | |
info="Get your API key from: https://console.groq.com/" | |
) | |
chutes_api_key = gr.Textbox( | |
label="π Chutes API Key", | |
placeholder="Enter your Chutes API key here...", | |
type="password", | |
info="Required for openai/gpt-oss-20b model" | |
) | |
with gr.Column(scale=2): | |
model_selection = gr.Radio( | |
choices=[ | |
"compound-beta", | |
"compound-beta-mini", | |
"openai/gpt-oss-20b" | |
], | |
label="π§ Model Selection", | |
value="compound-beta", | |
info="Choose based on your needs" | |
) | |
with gr.Column(scale=1): | |
connect_btn = gr.Button("π Connect", variant="primary", size="lg") | |
status_display = gr.Markdown("### π Status: Not connected", elem_classes=["status-box"]) | |
connect_btn.click( | |
fn=validate_api_keys, | |
inputs=[groq_api_key, chutes_api_key, model_selection], | |
outputs=[status_display] | |
) | |
model_selection.change( | |
fn=update_model, | |
inputs=[model_selection], | |
outputs=[status_display] | |
) | |
with gr.Tab("π¬ Chat"): | |
chatbot = gr.Chatbot( | |
label="Creative AI Assistant with Enhanced Search", | |
height=500, | |
show_label=True, | |
bubble_full_width=False, | |
show_copy_button=True | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
lines=3 | |
) | |
with gr.Column(): | |
send_btn = gr.Button("π€ Send", variant="primary") | |
clear_btn = gr.Button("ποΈ Clear", variant="secondary") | |
with gr.Accordion("π Search Settings", open=False, elem_id="neuroscope-accordion"): | |
with gr.Row(): | |
search_type = gr.Radio( | |
choices=["auto", "web_search", "none"], | |
label="π― Search Type", | |
value="auto", | |
info="Choose search method (auto = model decides)" | |
) | |
force_search = gr.Checkbox( | |
label="β‘ Force Search", | |
value=False, | |
info="Force AI to search even for general questions (Groq models only)" | |
) | |
model_selection.change( | |
fn=get_search_options, | |
inputs=[model_selection], | |
outputs=[search_type] | |
) | |
with gr.Accordion("π Domain Filtering (Web Search Models Only)", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="domain-info"> | |
<h4>π Domain Filtering Guide</h4> | |
<p><strong>Note:</strong> Domain filtering only works with compound models (compound-beta, compound-beta-mini)</p> | |
<ul> | |
<li><strong>Include Domains:</strong> Only search these domains (comma-separated)</li> | |
<li><strong>Exclude Domains:</strong> Never search these domains (comma-separated)</li> | |
<li><strong>Examples:</strong> arxiv.org, *.edu, github.com, stackoverflow.com</li> | |
<li><strong>Wildcards:</strong> Use *.edu for all educational domains</li> | |
</ul> | |
</div> | |
""") | |
with gr.Row(): | |
include_domains = gr.Textbox( | |
label="β Include Domains (comma-separated)", | |
placeholder="arxiv.org, *.edu, github.com, stackoverflow.com", | |
info="Only search these domains (compound models only)" | |
) | |
exclude_domains = gr.Textbox( | |
label="β Exclude Domains (comma-separated)", | |
placeholder="wikipedia.org, reddit.com, twitter.com", | |
info="Never search these domains (compound models only)" | |
) | |
with gr.Accordion("βοΈ Advanced Settings", open=False, elem_id="neuroscope-accordion"): | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="π‘οΈ Temperature", | |
info="Higher = more creative, Lower = more focused" | |
) | |
max_tokens = gr.Slider( | |
minimum=100, | |
maximum=4000, | |
value=1024, | |
step=100, | |
label="π Max Tokens", | |
info="Maximum length of response" | |
) | |
system_prompt = gr.Textbox( | |
label="π Custom System Prompt", | |
placeholder="Override the default system prompt...", | |
lines=3, | |
info="Leave empty to use default creative assistant prompt with enhanced citations" | |
) | |
with gr.Accordion("π Model Comparison Guide", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
### π Choose Your Model Based on Task: | |
**For Academic Research & Domain-Specific Search:** | |
- `compound-beta` or `compound-beta-mini` with include domains (*.edu, arxiv.org) | |
- Best for: Research papers, academic sources, filtered searches | |
- API: Groq | |
**For General Knowledge & Creative Tasks:** | |
- `openai/gpt-oss-20b` for fast conversational responses | |
- Best for: Creative writing, general questions | |
- API: Chutes | |
**For Programming & Technical Documentation:** | |
- `compound-beta` with tech domains | |
- Best for: Code help, documentation, technical guides | |
- API: Groq | |
""") | |
with gr.Accordion("π Common Domain Examples", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Academic & Research:** | |
- `arxiv.org`, `*.edu`, `scholar.google.com`, `researchgate.net`, `pubmed.ncbi.nlm.nih.gov` | |
**Technology & Programming:** | |
- `github.com`, `stackoverflow.com`, `docs.python.org`, `developer.mozilla.org`, `medium.com` | |
**News & Media:** | |
- `reuters.com`, `bbc.com`, `npr.org`, `apnews.com`, `cnn.com`, `nytimes.com` | |
**Business & Finance:** | |
- `bloomberg.com`, `wsj.com`, `nasdaq.com`, `sec.gov`, `investopedia.com` | |
**Science & Medicine:** | |
- `nature.com`, `science.org`, `pubmed.ncbi.nlm.nih.gov`, `who.int`, `cdc.gov` | |
**Government & Official:** | |
- `*.gov`, `*.org`, `un.org`, `worldbank.org`, `imf.org` | |
""") | |
with gr.Accordion("π How to Use This Enhanced App", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
### π Getting Started | |
1. **Enter your API Keys** - Groq from [console.groq.com](https://console.groq.com/), Chutes for openai/gpt-oss-20b | |
2. **Select a model** - Choose based on your needs: | |
- **Compound models** (Groq): For web search with domain filtering | |
- **openai/gpt-oss-20b** (Chutes): For general conversational tasks | |
3. **Configure search settings** - Choose search type and options (Groq models only) | |
4. **Click Connect** - Validate your keys and connect to the AI | |
5. **Start chatting!** - Type your message and get intelligent responses with citations | |
### π― Key Features | |
- **Dual APIs**: Web search (Groq) + Basic chat (Chutes) | |
- **Smart Citations**: Automatic source linking and citation formatting (Groq models) | |
- **Domain Filtering**: Control which websites the AI searches (Groq models) | |
- **Model Flexibility**: Choose the right model and API for your task | |
- **Enhanced Tool Visibility**: See search tools used (Groq models) | |
### π‘ Tips for Best Results | |
**For Research Tasks:** | |
- Use compound models with domain filtering | |
- Include academic domains (*.edu, arxiv.org) for scholarly sources | |
- Use "Force Search" for the most current information | |
**For Creative Tasks:** | |
- Use openai/gpt-oss-20b (Chutes) or any model | |
- Set search type to "none" for purely creative responses | |
- Use higher temperature (0.8-1.0) for more creativity | |
""") | |
with gr.Accordion("π― Sample Examples to Test Enhanced Search", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="example-box"> | |
<h4>π¬ Research & Analysis</h4> | |
**Compound Model + Domain Filtering (Groq):** | |
- Query: "What are the latest breakthroughs in quantum computing?" | |
- Model: compound-beta | |
- Include domains: "arxiv.org, *.edu, nature.com" | |
- Search type: web_search | |
<h4>π¬ General Knowledge (Chutes):** | |
- Query: "Tell me about quantum computing" | |
- Model: openai/gpt-oss-20b | |
- Search type: none | |
<h4>π» Programming & Tech</h4> | |
**Technical Documentation (Groq):** | |
- Query: "How to implement OAuth 2.0 in Python Flask?" | |
- Model: compound-beta | |
- Include domains: "github.com, docs.python.org, stackoverflow.com" | |
- Search type: web_search | |
**Code Help (Chutes):** | |
- Same query with openai/gpt-oss-20b | |
- Search type: none | |
<h4>π¨ Creative Tasks</h4> | |
- Query: "Write a short story about AI and humans working together" | |
- Any model with search_type: "none" | |
- Higher temperature (0.8-1.0) | |
<h4>π Business Analysis</h4> | |
**Business Analysis (Filtered, Groq):** | |
- Query: "Cryptocurrency adoption in enterprise" | |
- Model: compound-beta | |
- Include domains: "bloomberg.com, wsj.com, harvard.edu" | |
- Search type: web_search | |
</div> | |
""") | |
send_btn.click( | |
fn=chat_with_ai, | |
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot], | |
outputs=[chatbot, msg] | |
) | |
msg.submit( | |
fn=chat_with_ai, | |
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot], | |
outputs=[chatbot, msg] | |
) | |
clear_btn.click( | |
fn=clear_chat_history, | |
outputs=[chatbot] | |
) | |
with gr.Accordion("π About This Enhanced NeuroScope AI", open=True, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Enhanced Creative Agentic AI Chat Tool** with dual API support: | |
### π **New in This Version:** | |
- π¬ **Chutes API Integration**: For openai/gpt-oss-20b model | |
- π **Dual API System**: Web search (Groq) + Basic chat (Chutes) | |
- π― **Model Flexibility**: Multiple models across two APIs | |
- β‘ **Force Search Option**: Make AI search for Groq models | |
- π§ **Enhanced Tool Visibility**: See search tools used (Groq models) | |
- π **Model Comparison Guide**: Choose the right model and API | |
### π **Core Features:** | |
- π **Automatic Source Citations**: Clickable links to sources (Groq models) | |
- π **Sources Used Section**: Dedicated section for websites (Groq models) | |
- π **Smart Domain Filtering**: Control search scope (Groq models) | |
- π¬ **Conversational Memory**: Maintains context throughout the session | |
- βοΈ **Full Customization**: Adjust all parameters and prompts | |
- π¨ **Creative & Analytical**: Optimized for both creative and research tasks | |
### π οΈ **Technical Details:** | |
- **Compound Models (Groq)**: compound-beta, compound-beta-mini (web search + domain filtering) | |
- **Chat Model (Chutes)**: openai/gpt-oss-20b (basic conversational capabilities) | |
- **Automatic Search Type Detection**: AI chooses best search method (Groq models) | |
- **Enhanced Error Handling**: Robust error management and user feedback | |
- **Real-time Status Updates**: Live feedback on model capabilities and search settings | |
""") | |
return app | |
# Main execution | |
if __name__ == "__main__": | |
app = create_gradio_app() | |
app.launch( | |
share=True | |
) |