File size: 7,450 Bytes
12efa10 dcc7731 12efa10 f07d235 12efa10 42d6492 dcc7731 12efa10 dcc7731 12efa10 dcc7731 12efa10 dcc7731 12efa10 b3dd8e6 12efa10 f2f0d1a 0f3a082 dcc7731 42d6492 12efa10 ca48878 12efa10 42d6492 f07d235 12efa10 dcc7731 12efa10 b3dd8e6 12efa10 dcc7731 12efa10 f07d235 12efa10 f07d235 12efa10 00e1096 12efa10 f07d235 bcbf716 ca48878 fe52969 378e964 e60f602 bcbf716 12efa10 dcc7731 12efa10 dcc7731 12efa10 b3dd8e6 12efa10 dcc7731 8475783 12efa10 8475783 12efa10 dcc7731 12efa10 dcc7731 b3dd8e6 12efa10 dcc7731 12efa10 dcc7731 12efa10 b3dd8e6 12efa10 01cd9ce 2fe1d39 01cd9ce a92eec7 01cd9ce 2fe1d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import glob
import json
import os
from dataclasses import dataclass
import dateutil
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, EvalDimensions
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
results: dict
model_source: str = "" # HF, API, ...
model_category: str = "" #Nano, Small, Medium, Large
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Get model and org
org_and_model = config.get("model", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}"
full_model = "/".join(org_and_model)
still_on_hub, _, _ = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
# Extract results available in this file (some results are split in several files)
results = {}
results_obj = data.get("results")
results["average_score"] = results_obj.get("average_score")
results["speed"] = results_obj.get("speed")
results["contamination_score"] = results_obj.get("contamination_score")
scores_by_category = results_obj.get("scores_by_category")
for category_obj in scores_by_category:
category = category_obj["category"]
average_score = category_obj["average_score"]
results[category.lower()] = average_score
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
model_source=config.get("model_source", ""),
model_category=config.get("model_category", ""),
results=results,
still_on_hub=still_on_hub,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average_score = self.results["average_score"]
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.model_source.name: self.model_source,
AutoEvalColumn.model_category.name: self.model_category,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.average_score.name: average_score,
}
for eval_dim in EvalDimensions:
dimension_name = eval_dim.value.col_name
try:
dimension_value = self.results[eval_dim.value.metric]
except KeyError:
dimension_value = 0
if dimension_name == "Contamination Score":
dimension_value = 0 if dimension_value < 0 else round(dimension_value,2)
data_dict[dimension_name] = dimension_value
return data_dict
def get_request_file_for_model(requests_path, model_name):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
## we allow HTML files now
#if len(files) == 0 or any([not f.endswith(".json") for f in files]):
# continue
files = [f for f in files if f.endswith(".json")]
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError as e:
print("Error",e)
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
#eval_result.update_with_request_file(requests_path) ##not needed, save processing time
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
print("Key error in eval result, skipping")
continue
return results
def get_model_answers_html_file(results_path, model_name):
model_org,model_name_only = model_name.split("/")
model_answers_prefix = f"{results_path}/{model_org}/"
html_file_content = "EMPTY"
download_file_path = "https://huggingface.co/spaces/silma-ai/Arabic-LLM-Broad-Leaderboard/raw/main/"
for root, _, files in os.walk(model_answers_prefix):
for file_name in files:
if file_name.startswith(f"{model_name_only}_abb_benchmark_answers_"):
file_path = os.path.join(root, file_name)
with open(file_path, "r") as f:
html_file_content = f.read()
download_file_path = download_file_path + file_path.replace("./", "")
break
return html_file_content,download_file_path |