File size: 7,450 Bytes
12efa10
 
 
 
 
 
dcc7731
 
12efa10
 
 
 
 
 
 
 
 
 
 
 
f07d235
 
12efa10
 
 
 
 
 
 
 
 
 
 
 
42d6492
dcc7731
12efa10
 
 
 
 
dcc7731
12efa10
 
 
dcc7731
12efa10
 
dcc7731
12efa10
 
b3dd8e6
12efa10
 
 
f2f0d1a
0f3a082
dcc7731
42d6492
 
 
12efa10
ca48878
 
 
 
 
 
 
 
 
 
12efa10
 
 
 
 
42d6492
f07d235
12efa10
 
 
 
 
 
dcc7731
12efa10
 
 
b3dd8e6
12efa10
 
dcc7731
12efa10
 
 
f07d235
12efa10
 
f07d235
 
12efa10
00e1096
12efa10
 
f07d235
bcbf716
ca48878
 
 
 
 
fe52969
378e964
e60f602
bcbf716
12efa10
 
 
 
dcc7731
12efa10
 
 
dcc7731
12efa10
b3dd8e6
12efa10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcc7731
 
8475783
 
 
12efa10
 
 
 
8475783
 
12efa10
dcc7731
12efa10
 
 
 
 
 
 
dcc7731
b3dd8e6
12efa10
 
 
 
 
 
 
 
dcc7731
12efa10
 
dcc7731
12efa10
 
 
b3dd8e6
 
12efa10
 
 
01cd9ce
 
 
 
 
 
 
 
2fe1d39
01cd9ce
 
 
 
 
 
 
 
 
 
 
 
a92eec7
01cd9ce
 
2fe1d39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import glob
import json
import os
from dataclasses import dataclass
import dateutil

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, EvalDimensions
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    results: dict
    model_source: str = "" # HF, API, ...
    model_category: str = "" #Nano, Small, Medium, Large
    date: str = "" # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Get model and org
        org_and_model = config.get("model", config.get("model_args", None))
  
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, _ = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        

        # Extract results available in this file (some results are split in several files)
        results = {}

        results_obj = data.get("results")
        
        results["average_score"] = results_obj.get("average_score")
        results["speed"] = results_obj.get("speed")
        results["contamination_score"] = results_obj.get("contamination_score")

        scores_by_category = results_obj.get("scores_by_category")

        for category_obj in scores_by_category:
            category = category_obj["category"]
            average_score = category_obj["average_score"]
            results[category.lower()] = average_score

            
        

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            model_source=config.get("model_source", ""),
            model_category=config.get("model_category", ""),
            results=results,
            still_on_hub=still_on_hub,
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model)
        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average_score = self.results["average_score"]
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.model_source.name: self.model_source,
            AutoEvalColumn.model_category.name: self.model_category,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.average_score.name: average_score,
        }

        for eval_dim in EvalDimensions:
            dimension_name = eval_dim.value.col_name
            try:
                dimension_value = self.results[eval_dim.value.metric]
            except KeyError:
                dimension_value = 0

            if dimension_name == "Contamination Score":
                dimension_value = 0 if dimension_value < 0 else round(dimension_value,2)
            
            data_dict[dimension_name] = dimension_value

        return data_dict


def get_request_file_for_model(requests_path, model_name):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request.json",
    )
    
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED"]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        
        ## we allow HTML files now
        #if len(files) == 0 or any([not f.endswith(".json") for f in files]):
        #    continue
        files = [f for f in files if f.endswith(".json")]

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError as e:
            print("Error",e)
            files = [files[-1]]
        
        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        #eval_result.update_with_request_file(requests_path) ##not needed, save processing time

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []

    for v in eval_results.values():
        try:

            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            print("Key error in eval result, skipping")
            
            continue

    return results


def get_model_answers_html_file(results_path, model_name):

    model_org,model_name_only = model_name.split("/")
    model_answers_prefix = f"{results_path}/{model_org}/"

    html_file_content = "EMPTY"
    download_file_path = "https://huggingface.co/spaces/silma-ai/Arabic-LLM-Broad-Leaderboard/raw/main/"

    for root, _, files in os.walk(model_answers_prefix):

        for file_name in files:

            if file_name.startswith(f"{model_name_only}_abb_benchmark_answers_"):

                file_path = os.path.join(root, file_name)

                with open(file_path, "r") as f:
                    
                    html_file_content = f.read()
                    download_file_path = download_file_path + file_path.replace("./", "")
                    break

    return html_file_content,download_file_path