Spaces:
Running
Running
File size: 35,663 Bytes
b2373ce c003127 b2373ce c003127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 |
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
from groq import Groq
from dataclasses import dataclass
import tempfile
import base64
import io
import plotly.express as px
import plotly.graph_objects as go
# Set page configuration
st.set_page_config(
page_title="Data Analysis Assistant",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for DeepMind-inspired styling
st.markdown("""
<style>
/* Main font and colors */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
html, body, [class*="css"] {
font-family: 'Inter', sans-serif;
}
/* Primary colors */
:root {
--primary-color: #1a73e8;
--secondary-color: #5f6368;
--accent-color: #34a853;
--background-color: #f8f9fa;
--card-background: #ffffff;
--border-color: #dadce0;
}
/* Header styling */
.main-header {
color: #202124;
font-weight: 700;
font-size: 2.5rem;
margin-bottom: 1rem;
background: linear-gradient(90deg, #1a73e8, #8ab4f8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
}
.sub-header {
color: #5f6368;
font-weight: 500;
font-size: 1.5rem;
margin-bottom: 1.5rem;
text-align: center;
}
/* Card styling */
.card {
background-color: var(--card-background);
border-radius: 8px;
padding: 20px;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
border: 1px solid var(--border-color);
}
.card-title {
font-weight: 600;
font-size: 1.2rem;
margin-bottom: 10px;
color: #202124;
}
/* Button styling */
.stButton > button {
background-color: var(--primary-color);
color: white;
border-radius: 4px;
padding: 0.5rem 1rem;
font-weight: 500;
border: none;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: #1967d2;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
/* Input fields */
.stTextInput > div > div > input {
border-radius: 4px;
border: 1px solid var(--border-color);
padding: 0.5rem;
}
/* Selectbox */
.stSelectbox > div > div > div {
border-radius: 4px;
border: 1px solid var(--border-color);
}
/* Spinner */
.stSpinner > div > div > div {
border-top-color: var(--primary-color) !important;
}
/* Success message */
.stSuccess {
background-color: #e6f4ea;
color: #34a853;
border: none;
border-radius: 4px;
}
/* Error message */
.stError {
background-color: #fce8e6;
color: #ea4335;
border: none;
border-radius: 4px;
}
/* File uploader */
.stFileUploader > div > button {
background-color: var(--primary-color);
color: white;
}
.stFileUploader > div {
border: 2px dashed var(--border-color);
border-radius: 8px;
padding: 20px;
}
/* Dataframe styling */
.dataframe-container {
border-radius: 8px;
overflow: hidden;
border: 1px solid var(--border-color);
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 2px;
}
.stTabs [data-baseweb="tab"] {
background-color: transparent;
border-radius: 4px 4px 0 0;
border: none;
color: var(--secondary-color);
font-weight: 500;
}
.stTabs [aria-selected="true"] {
background-color: white;
color: var(--primary-color);
border-bottom: 2px solid var(--primary-color);
}
/* Animation for results */
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
.fade-in {
animation: fadeIn 0.5s ease-out forwards;
}
/* Metrics styling */
.metric-card {
background-color: white;
border-radius: 8px;
padding: 15px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
text-align: center;
border: 1px solid var(--border-color);
}
.metric-value {
font-size: 1.8rem;
font-weight: 700;
color: var(--primary-color);
}
.metric-label {
font-size: 0.9rem;
color: var(--secondary-color);
margin-top: 5px;
}
/* Sidebar styling */
.css-1d391kg {
background-color: white;
}
/* Logo display */
.logo-container {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.logo {
max-width: 180px;
}
</style>
""", unsafe_allow_html=True)
class GroqLLM:
"""Compatible LLM interface for smolagents CodeAgent"""
def __init__(self, model_name="llama-3.1-8B-Instant"):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
"""Make the class callable as required by smolagents"""
try:
# Handle different prompt formats
if isinstance(prompt, (dict, list)):
prompt_str = str(prompt)
else:
prompt_str = str(prompt)
# Create a properly formatted message
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{
"role": "user",
"content": prompt_str
}],
temperature=0.7,
max_tokens=1024,
stream=False
)
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return error_msg
class DataAnalysisAgent(CodeAgent):
"""Extended CodeAgent with dataset awareness"""
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
super().__init__(*args, **kwargs)
self._dataset = dataset
@property
def dataset(self) -> pd.DataFrame:
"""Access the stored dataset"""
return self._dataset
def run(self, prompt: str) -> str:
"""Override run method to include dataset context"""
dataset_info = f"""
Dataset Shape: {self.dataset.shape}
Columns: {', '.join(self.dataset.columns)}
Data Types: {self.dataset.dtypes.to_dict()}
"""
enhanced_prompt = f"""
Analyze the following dataset:
{dataset_info}
Task: {prompt}
Use the provided tools to analyze this specific dataset and return detailed results.
"""
return super().run(enhanced_prompt)
@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
"""Calculate basic statistical measures for numerical columns in the dataset."""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
stats = {}
numeric_cols = data.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
stats[col] = {
'mean': float(data[col].mean()),
'median': float(data[col].median()),
'std': float(data[col].std()),
'skew': float(data[col].skew()),
'missing': int(data[col].isnull().sum())
}
return str(stats)
@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
"""Generate a visual correlation matrix for numerical columns in the dataset."""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
numeric_data = data.select_dtypes(include=[np.number])
# Using a modern Plotly heatmap instead of matplotlib
fig = px.imshow(
numeric_data.corr(),
text_auto=True,
aspect="auto",
color_continuous_scale="Blues",
title="Feature Correlation Matrix"
)
fig.update_layout(
height=600,
width=800,
font=dict(family="Inter, sans-serif"),
plot_bgcolor="white",
title_font=dict(size=20, color="#202124", family="Inter, sans-serif"),
margin=dict(l=40, r=40, t=60, b=40),
)
# Convert to HTML for display
fig_html = fig.to_html(full_html=False, include_plotlyjs='cdn')
return fig_html
@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
"""Analyze categorical columns in the dataset for distribution and frequencies."""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
analysis = {}
for col in categorical_cols:
analysis[col] = {
'unique_values': int(data[col].nunique()),
'top_categories': data[col].value_counts().head(5).to_dict(),
'missing': int(data[col].isnull().sum())
}
# Create an HTML visualization of categorical data
html_content = "<div style='font-family: Inter, sans-serif;'>"
for col, stats in analysis.items():
html_content += f"<div class='card' style='margin-bottom: 20px; padding: 15px; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); background-color: white;'>"
html_content += f"<h3 style='color: #202124; margin-bottom: 10px;'>{col}</h3>"
html_content += f"<p><b>Unique Values:</b> {stats['unique_values']}</p>"
html_content += f"<p><b>Missing Values:</b> {stats['missing']}</p>"
# Add bar chart for top categories
if stats['top_categories']:
categories = list(stats['top_categories'].keys())
values = list(stats['top_categories'].values())
fig = go.Figure()
fig.add_trace(go.Bar(
x=categories,
y=values,
marker_color='#1a73e8',
hoverinfo='x+y'
))
fig.update_layout(
title=f"Top Categories for {col}",
xaxis_title="Category",
yaxis_title="Count",
font=dict(family="Inter, sans-serif"),
height=350,
margin=dict(l=40, r=40, t=60, b=80),
xaxis=dict(tickangle=-45)
)
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
html_content += "</div>"
html_content += "</div>"
return html_content
@tool
def suggest_features(data: pd.DataFrame) -> str:
"""Suggest potential feature engineering steps based on data characteristics."""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
suggestions = []
numeric_cols = data.select_dtypes(include=[np.number]).columns
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
if len(numeric_cols) >= 2:
suggestions.append("Consider creating interaction terms between numerical features")
if len(categorical_cols) > 0:
suggestions.append("Consider one-hot encoding for categorical variables")
for col in numeric_cols:
if data[col].skew() > 1 or data[col].skew() < -1:
suggestions.append(f"Consider log transformation for {col} due to skewness")
# Format as HTML for better display
html_content = """
<div style='font-family: Inter, sans-serif; background-color: #f8f9fa; padding: 20px; border-radius: 8px;'>
<h3 style='color: #202124; margin-bottom: 15px;'>Feature Engineering Suggestions</h3>
<ul style='list-style-type: none; padding-left: 0;'>
"""
for suggestion in suggestions:
html_content += f"""
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
border-left: 4px solid #1a73e8; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
<div style='display: flex; align-items: center;'>
<span style='color: #1a73e8; font-size: 18px; margin-right: 10px;'>β</span>
<span>{suggestion}</span>
</div>
</li>
"""
if not suggestions:
html_content += """
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
border-left: 4px solid #fbbc04; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
<div style='display: flex; align-items: center;'>
<span style='color: #fbbc04; font-size: 18px; margin-right: 10px;'>!</span>
<span>No specific feature engineering suggestions found for this dataset.</span>
</div>
</li>
"""
html_content += """
</ul>
</div>
"""
return html_content
@tool
def visualize_distributions(data: pd.DataFrame) -> str:
"""Create visualizations of numerical column distributions."""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
numeric_cols = data.select_dtypes(include=[np.number]).columns
if len(numeric_cols) == 0:
return "No numerical columns found in the dataset."
# Create HTML content with visualizations
html_content = "<div style='font-family: Inter, sans-serif;'>"
# Create a grid of histograms using plotly
fig = make_subplots(rows=len(numeric_cols), cols=1,
subplot_titles=numeric_cols,
vertical_spacing=0.05)
for i, col in enumerate(numeric_cols):
fig.add_trace(
go.Histogram(
x=data[col].dropna(),
name=col,
marker_color='#1a73e8',
opacity=0.7
),
row=i+1, col=1
)
fig.update_layout(
height=300 * len(numeric_cols),
width=800,
title_text="Distribution of Numerical Features",
showlegend=False,
font=dict(family="Inter, sans-serif"),
margin=dict(l=40, r=40, t=40, b=20),
)
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
html_content += "</div>"
return html_content
def generate_deepmind_logo():
"""Generate a placeholder logo similar to DeepMind's style."""
fig = go.Figure()
# Create simple geometric shapes for logo
fig.add_shape(
type="circle",
x0=0.3, y0=0.3, x1=0.7, y1=0.7,
line=dict(color="#1a73e8", width=3),
fillcolor="rgba(26, 115, 232, 0.2)",
)
fig.add_shape(
type="circle",
x0=0.4, y0=0.4, x1=0.6, y1=0.6,
line=dict(color="#1a73e8", width=2),
fillcolor="rgba(26, 115, 232, 0.4)",
)
fig.update_layout(
width=180,
height=60,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
margin=dict(l=0, r=0, t=0, b=0),
showlegend=False,
xaxis=dict(showgrid=False, zeroline=False, visible=False),
yaxis=dict(showgrid=False, zeroline=False, visible=False),
)
return fig.to_html(full_html=False, include_plotlyjs='cdn')
def main():
# Logo and header
st.markdown("""
<div class="logo-container">
<div class="logo">
<svg width="180" height="60" viewBox="0 0 180 60" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="30" cy="30" r="20" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
<circle cx="30" cy="30" r="10" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
<text x="60" y="35" font-family="Inter, sans-serif" font-size="18" font-weight="700" fill="#202124">Data Analysis</text>
</svg>
</div>
</div>
<h1 class="main-header">Data Analysis Assistant</h1>
<p class="sub-header">Upload your dataset and get intelligent insights with AI-powered analysis</p>
""", unsafe_allow_html=True)
# Initialize session state
if 'data' not in st.session_state:
st.session_state['data'] = None
if 'agent' not in st.session_state:
st.session_state['agent'] = None
if 'analysis_results' not in st.session_state:
st.session_state['analysis_results'] = None
# Create a two-column layout
col1, col2 = st.columns([1, 3])
with col1:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown('<div class="card-title">Upload Dataset</div>', unsafe_allow_html=True)
# File uploader with custom styling
uploaded_file = st.file_uploader("", type="csv")
if uploaded_file is not None:
try:
with st.spinner('Processing dataset...'):
# Load the dataset
data = pd.read_csv(uploaded_file)
st.session_state['data'] = data
# Initialize the agent with the dataset
st.session_state['agent'] = DataAnalysisAgent(
dataset=data,
tools=[analyze_basic_stats, generate_correlation_matrix,
analyze_categorical_columns, suggest_features,
visualize_distributions],
model=GroqLLM(),
additional_authorized_imports=["pandas", "numpy", "matplotlib",
"seaborn", "plotly"]
)
# Display dataset statistics
st.markdown("""
<div style="background-color: #e6f4ea; padding: 10px; border-radius: 4px; margin-top: 10px;">
<div style="display: flex; align-items: center;">
<span style="color: #34a853; font-size: 20px; margin-right: 10px;">β</span>
<span style="color: #34a853; font-weight: 500;">Dataset loaded successfully</span>
</div>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown(f"""
<div class="metric-card">
<div class="metric-value">{data.shape[0]:,}</div>
<div class="metric-label">Rows</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="metric-card">
<div class="metric-value">{data.shape[1]}</div>
<div class="metric-label">Columns</div>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error: {str(e)}")
# Analysis type selection
if st.session_state['data'] is not None:
st.markdown('<div class="card-title" style="margin-top: 20px;">Analysis Tools</div>', unsafe_allow_html=True)
analysis_type = st.selectbox(
"Select analysis type",
["Data Overview", "Basic Statistics", "Feature Correlations",
"Categorical Analysis", "Feature Engineering", "Data Distributions",
"Ask Your Own Question"]
)
st.markdown('</div>', unsafe_allow_html=True)
# Main content area
with col2:
if st.session_state['data'] is not None:
# Data preview tab
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown('<div class="card-title">Data Preview</div>', unsafe_allow_html=True)
# Add tabs for different data views
data_tabs = st.tabs(["Data Sample", "Column Info", "Missing Values"])
with data_tabs[0]:
st.markdown('<div class="dataframe-container">', unsafe_allow_html=True)
st.dataframe(st.session_state['data'].head(10), use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
with data_tabs[1]:
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**Column Names**")
st.write(st.session_state['data'].columns.tolist())
with col2:
st.markdown("**Data Types**")
for col, dtype in st.session_state['data'].dtypes.items():
st.write(f"{col}: {dtype}")
with col3:
st.markdown("**Non-Null Count**")
for col, count in st.session_state['data'].count().items():
st.write(f"{col}: {count}/{len(st.session_state['data'])}")
with data_tabs[2]:
missing_data = st.session_state['data'].isnull().sum()
if missing_data.sum() > 0:
missing_df = pd.DataFrame({
'Column': missing_data.index,
'Missing Values': missing_data.values,
'Percentage': round(missing_data.values / len(st.session_state['data']) * 100, 2)
})
missing_df = missing_df[missing_df['Missing Values'] > 0].sort_values('Missing Values', ascending=False)
st.dataframe(missing_df, use_container_width=True)
# Add a visualization of missing values
fig = px.bar(
missing_df,
x='Column',
y='Percentage',
color='Percentage',
color_continuous_scale='Blues',
title='Missing Values by Column (%)'
)
fig.update_layout(
xaxis_title='',
yaxis_title='Missing Values (%)',
height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.success("No missing values in the dataset!")
st.markdown('</div>', unsafe_allow_html=True)
# Analysis results section
if analysis_type:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown(f'<div class="card-title">{analysis_type} Results</div>', unsafe_allow_html=True)
if analysis_type == "Data Overview":
col1, col2 = st.columns(2)
with col1:
st.markdown("### Dataset Summary")
st.dataframe(st.session_state['data'].describe(), use_container_width=True)
with col2:
st.markdown("### Data Profile")
numeric_count = len(st.session_state['data'].select_dtypes(include=[np.number]).columns)
categorical_count = len(st.session_state['data'].select_dtypes(include=['object', 'category']).columns)
# Create a pie chart for data types
fig = px.pie(
values=[numeric_count, categorical_count],
names=['Numeric', 'Categorical'],
color_discrete_sequence=['#1a73e8', '#34a853'],
hole=0.4
)
fig.update_layout(
title='Column Types',
font=dict(family="Inter, sans-serif"),
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5)
)
st.plotly_chart(fig, use_container_width=True)
elif analysis_type == "Basic Statistics":
with st.spinner('Analyzing basic statistics...'):
result = st.session_state['agent'].run(
"Use the analyze_basic_stats tool to analyze this dataset and "
"provide insights about the numerical distributions."
)
# Parse the string representation of the dictionary
try:
# Remove the literal 'str' prefix if present
if result.startswith("str("):
result = result[4:-1]
# Convert string to dict
import ast
stats_dict = ast.literal_eval(result)
# Display results in a more visual format
for col, stats in stats_dict.items():
st.markdown(f"### {col}")
# Create metrics in columns
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Mean", f"{stats['mean']:.2f}")
with col2:
st.metric("Median", f"{stats['median']:.2f}")
with col3:
st.metric("Std Dev", f"{stats['std']:.2f}")
with col4:
st.metric("Skewness", f"{stats['skew']:.2f}")
# Create a boxplot for this column
fig = px.box(
st.session_state['data'],
y=col,
points="all",
color_discrete_sequence=['#1a73e8'],
title=f"Distribution of {col}"
)
fig.update_layout(
height=300,
margin=dict(t=40, b=20, l=40, r=20),
font=dict(family="Inter, sans-serif")
)
st.plotly_chart(fig, use_container_width=True)
st.markdown("---")
except Exception as e:
st.write(result)
elif analysis_type == "Feature Correlations":
with st.spinner('Analyzing feature correlations...'):
result = st.session_state['agent'].run(
"Use the generate_correlation_matrix tool to analyze correlations "
"and explain any strong relationships found."
)
# If the result is HTML, display it directly
if isinstance(result, str) and ("<div" in result or "<html" in result):
st.components.v1.html(result, height=650)
else:
st.write(result)
elif analysis_type == "Categorical Analysis":
with st.spinner('Analyzing categorical data...'):
result = st.session_state['agent'].run(
"Use the analyze_categorical_columns tool to analyze categorical data "
"and provide insights about distributions and frequencies."
)
# Display the HTML content
if isinstance(result, str) and ("<div" in result or "<html" in result):
st.components.v1.html(result, height=700)
else:
st.write(result)
elif analysis_type == "Feature Engineering":
with st.spinner('Analyzing feature engineering possibilities...'):
result = st.session_state['agent'].run(
"Use the suggest_features tool to identify potential feature engineering "
"steps that could improve model performance."
)
# Display the HTML content
if isinstance(result, str) and ("<div" in result or "<html" in result):
st.components.v1.html(result, height=500)
else:
st.write(result)
elif analysis_type == "Data Distributions":
with st.spinner('Analyzing data distributions...'):
result = st.session_state['agent'].run(
"Use the visualize_distributions tool to analyze the numerical distributions "
"and identify any unusual patterns or outliers."
)
# Display the HTML content
if isinstance(result, str) and ("<div" in result or "<html" in result):
st.components.v1.html(result, height=800)
else:
st.write(result)
elif analysis_type == "Ask Your Own Question":
# Free-form question input
user_question = st.text_area("What would you like to know about this dataset?",
"What are the key insights from this dataset?")
if st.button("Analyze", key="custom_analysis"):
with st.spinner('Analyzing your question...'):
result = st.session_state['agent'].run(user_question)
st.session_state['analysis_results'] = result
if st.session_state['analysis_results']:
# Display the result
st.markdown("### Analysis Results")
# Check if result is HTML
if isinstance(st.session_state['analysis_results'], str) and ("<div" in st.session_state['analysis_results'] or "<html" in st.session_state['analysis_results']):
st.components.v1.html(st.session_state['analysis_results'], height=600)
else:
st.write(st.session_state['analysis_results'])
st.markdown('</div>', unsafe_allow_html=True)
else:
# Display welcome message for users who haven't uploaded data yet
st.markdown("""
<div class="card fade-in">
<div style="text-align: center; padding: 50px 20px;">
<svg width="80" height="80" viewBox="0 0 80 80" fill="none" xmlns="http://www.w3.org/2000/svg" style="margin-bottom: 20px;">
<circle cx="40" cy="40" r="30" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
<circle cx="40" cy="40" r="15" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
</svg>
<h2 style="color: #202124; margin-bottom: 15px;">Welcome to Data Analysis Assistant</h2>
<p style="color: #5f6368; font-size: 16px; max-width: 600px; margin: 0 auto 25px auto;">
Upload a CSV file to get started with instant insights and intelligent analysis.
Our AI-powered assistant will help you understand your data like never before.
</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap; gap: 20px; margin-bottom: 30px;">
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">π</div>
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Automatic Visualizations</h3>
<p style="color: #5f6368; font-size: 14px;">Get instant charts and plots revealing insights in your data</p>
</div>
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">π§ </div>
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">AI-Powered Analysis</h3>
<p style="color: #5f6368; font-size: 14px;">Advanced algorithms find patterns and correlations automatically</p>
</div>
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">π‘</div>
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Smart Recommendations</h3>
<p style="color: #5f6368; font-size: 14px;">Get suggestions for feature engineering and data preparation</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Import for subplot creation
from plotly.subplots import make_subplots
if __name__ == "__main__":
# Check if Groq API key is available
if not os.environ.get("GROQ_API_KEY"):
st.error("""
GROQ API key not found! Please set your GROQ_API_KEY environment variable.
You can get an API key from https://console.groq.com/
""")
else:
main() |