previsit / app.py
siyah1's picture
Update app.py
d7aadc9 verified
import asyncio
import base64
import json
import os
from threading import Event
from datetime import datetime
import gradio as gr
import numpy as np
import websockets.sync.client
from dotenv import load_dotenv
from gradio_webrtc import StreamHandler, WebRTC
load_dotenv()
# Predefined API key
GEMINI_API_KEY = "AIzaSyBem8AlttTGdGxGH3bZEs0xcnw5RIF5BsY"
class MedicalGeminiConfig:
def __init__(self, api_key):
self.api_key = api_key
self.host = "generativelanguage.googleapis.com"
self.model = "models/gemini-2.0-flash-exp"
self.ws_url = f"wss://{self.host}/ws/google.ai.generativelanguage.v1alpha.GenerativeService.BidiGenerateContent?key={self.api_key}"
def get_medical_system_prompt(self):
return """You are SocioCare AI, a compassionate and knowledgeable medical preconsultation assistant. You are engaging in a real-time voice conversation with a patient for their preliminary health assessment.
IMPORTANT GUIDELINES:
- Speak naturally and conversationally, as if you're a caring healthcare professional
- Be empathetic, warm, and reassuring while maintaining professionalism
- Ask relevant follow-up questions to understand symptoms and concerns better
- Provide general health guidance and preliminary assessments
- ALWAYS emphasize that this is a preconsultation and not a substitute for professional medical care
- If symptoms seem serious or urgent, encourage immediate medical attention
- Maintain patient confidentiality and professionalism
- Use simple, clear language that patients can understand
- Be patient and allow time for the patient to explain their concerns thoroughly
PRECONSULTATION FLOW:
1. Greet the patient warmly and introduce yourself as SocioCare AI
2. Ask about their main health concern or symptoms
3. Listen actively and ask clarifying questions about symptoms, duration, severity
4. Provide general health information and preliminary guidance
5. Recommend appropriate next steps (rest, hydration, seeing a doctor, specialist referral, etc.)
6. Offer to answer any additional questions about their health concerns
7. Provide a summary of key points discussed
Remember: You are providing preliminary health assessment and information only. For diagnosis, treatment, and comprehensive care, patients should consult with licensed healthcare professionals."""
class AudioProcessor:
@staticmethod
def encode_audio(data, sample_rate):
encoded = base64.b64encode(data.tobytes()).decode("UTF-8")
return {
"realtimeInput": {
"mediaChunks": [
{
"mimeType": f"audio/pcm;rate={sample_rate}",
"data": encoded,
}
],
},
}
@staticmethod
def process_audio_response(data):
audio_data = base64.b64decode(data)
return np.frombuffer(audio_data, dtype=np.int16)
class MedicalGeminiHandler(StreamHandler):
def __init__(
self, expected_layout="mono", output_sample_rate=24000, output_frame_size=480
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=24000,
)
self.config = None
self.ws = None
self.all_output_data = None
self.audio_processor = AudioProcessor()
self.args_set = Event()
self.session_started = False
self.conversation_log = []
def copy(self):
return MedicalGeminiHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
def _initialize_websocket(self):
assert self.config, "Config not set"
try:
self.ws = websockets.sync.client.connect(self.config.ws_url, timeout=30)
initial_request = {
"setup": {
"model": self.config.model,
"generationConfig": {
"responseModalities": ["AUDIO"],
"speechConfig": {
"voiceConfig": {
"prebuiltVoiceConfig": {
"voiceName": "Aoede" # Warm, professional voice
}
}
}
},
"systemInstruction": {
"parts": [
{
"text": self.config.get_medical_system_prompt()
}
]
}
}
}
self.ws.send(json.dumps(initial_request))
setup_response = json.loads(self.ws.recv())
print(f"SocioCare AI preconsultation setup: {setup_response}")
# Send initial greeting
if not self.session_started:
self._send_initial_greeting()
self.session_started = True
except websockets.exceptions.WebSocketException as e:
print(f"WebSocket connection failed: {str(e)}")
self.ws = None
except Exception as e:
print(f"Setup failed: {str(e)}")
self.ws = None
def _send_initial_greeting(self):
"""Send initial greeting to start the medical preconsultation"""
try:
greeting_message = {
"clientContent": {
"turns": [
{
"role": "user",
"parts": [
{
"text": "Please start the preconsultation by greeting me as a patient and introducing yourself as SocioCare AI."
}
]
}
],
"turnComplete": True
}
}
self.ws.send(json.dumps(greeting_message))
except Exception as e:
print(f"Error sending initial greeting: {str(e)}")
async def fetch_args(self):
if self.channel:
self.channel.send("tick")
def set_args(self, args):
super().set_args(args)
self.args_set.set()
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if not self.channel:
return
if not self.config:
# Use predefined API key instead of fetching from args
self.config = MedicalGeminiConfig(GEMINI_API_KEY)
try:
if not self.ws:
self._initialize_websocket()
_, array = frame
array = array.squeeze()
audio_message = self.audio_processor.encode_audio(
array, self.output_sample_rate
)
self.ws.send(json.dumps(audio_message))
except Exception as e:
print(f"Error in receive: {str(e)}")
if self.ws:
self.ws.close()
self.ws = None
def _process_server_content(self, content):
for part in content.get("parts", []):
data = part.get("inlineData", {}).get("data", "")
if data:
audio_array = self.audio_processor.process_audio_response(data)
if self.all_output_data is None:
self.all_output_data = audio_array
else:
self.all_output_data = np.concatenate(
(self.all_output_data, audio_array)
)
while self.all_output_data.shape[-1] >= self.output_frame_size:
yield (
self.output_sample_rate,
self.all_output_data[: self.output_frame_size].reshape(1, -1),
)
self.all_output_data = self.all_output_data[
self.output_frame_size :
]
def generator(self):
while True:
if not self.ws or not self.config:
print("WebSocket not connected")
yield None
continue
try:
message = self.ws.recv(timeout=5)
msg = json.loads(message)
if "serverContent" in msg:
content = msg["serverContent"].get("modelTurn", {})
yield from self._process_server_content(content)
except TimeoutError:
print("Timeout waiting for server response")
yield None
except Exception as e:
print(f"Error in generator: {str(e)}")
yield None
def emit(self) -> tuple[int, np.ndarray] | None:
if not self.ws:
return None
if not hasattr(self, "_generator"):
self._generator = self.generator()
try:
return next(self._generator)
except StopIteration:
self.reset()
return None
def reset(self) -> None:
if hasattr(self, "_generator"):
delattr(self, "_generator")
self.all_output_data = None
def shutdown(self) -> None:
if self.ws:
self.ws.close()
def check_connection(self):
try:
if not self.ws or self.ws.closed:
self._initialize_websocket()
return True
except Exception as e:
print(f"Connection check failed: {str(e)}")
return False
def get_rtc_configuration():
"""
Get RTC configuration using only public STUN servers
"""
return {
"iceServers": [
{"urls": "stun:stun.l.google.com:19302"},
{"urls": "stun:stun1.l.google.com:19302"},
{"urls": "stun:stun2.l.google.com:19302"},
{"urls": "stun:stun3.l.google.com:19302"},
{"urls": "stun:stun4.l.google.com:19302"},
]
}
class SocioCareAIPreconsultation:
def __init__(self):
self.demo = self._create_interface()
def _create_interface(self):
# Modern dark theme CSS matching the image
custom_css = """
<style>
/* Global dark theme */
.gradio-container {
background: linear-gradient(135deg, #0F0C29 0%, #24243e 50%, #302B63 100%) !important;
min-height: 100vh;
}
.dark {
background: linear-gradient(135deg, #0F0C29 0%, #24243e 50%, #302B63 100%) !important;
}
/* Main container */
.main-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
min-height: 90vh;
padding: 2rem;
}
/* AI Icon and waves container */
.ai-icon-container {
position: relative;
margin-bottom: 3rem;
display: flex;
flex-direction: column;
align-items: center;
}
/* Audio waves */
.audio-waves {
display: flex;
align-items: center;
justify-content: center;
gap: 4px;
margin-bottom: 2rem;
height: 60px;
}
.wave-dot {
width: 6px;
height: 6px;
background: #667EEA;
border-radius: 50%;
animation: pulse 2s ease-in-out infinite;
opacity: 0.6;
}
.wave-bar {
width: 4px;
background: linear-gradient(to top, #667EEA, #764BA2);
border-radius: 2px;
animation: wave 1.5s ease-in-out infinite;
}
.wave-bar:nth-child(1) { height: 20px; animation-delay: 0s; }
.wave-bar:nth-child(2) { height: 35px; animation-delay: 0.1s; }
.wave-bar:nth-child(3) { height: 45px; animation-delay: 0.2s; }
.wave-bar:nth-child(4) { height: 60px; animation-delay: 0.3s; }
.wave-bar:nth-child(5) { height: 50px; animation-delay: 0.4s; }
.wave-bar:nth-child(6) { height: 40px; animation-delay: 0.5s; }
.wave-bar:nth-child(7) { height: 55px; animation-delay: 0.6s; }
.wave-bar:nth-child(8) { height: 35px; animation-delay: 0.7s; }
.wave-bar:nth-child(9) { height: 25px; animation-delay: 0.8s; }
.wave-bar:nth-child(10) { height: 40px; animation-delay: 0.9s; }
.wave-bar:nth-child(11) { height: 50px; animation-delay: 1s; }
.wave-bar:nth-child(12) { height: 30px; animation-delay: 1.1s; }
@keyframes wave {
0%, 100% { transform: scaleY(0.5); opacity: 0.7; }
50% { transform: scaleY(1); opacity: 1; }
}
@keyframes pulse {
0%, 100% { opacity: 0.4; transform: scale(1); }
50% { opacity: 1; transform: scale(1.2); }
}
/* AI Icon */
.ai-icon {
width: 120px;
height: 120px;
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%);
border-radius: 24px;
display: flex;
align-items: center;
justify-content: center;
font-size: 3rem;
color: white;
box-shadow: 0 20px 40px rgba(102, 126, 234, 0.3);
margin-bottom: 2rem;
position: relative;
overflow: hidden;
}
.ai-icon::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, transparent 30%, rgba(255,255,255,0.1) 50%, transparent 70%);
animation: shimmer 3s ease-in-out infinite;
}
@keyframes shimmer {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
/* Title */
.ai-title {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
margin-bottom: 0.5rem;
letter-spacing: -0.02em;
}
/* Subtitle */
.ai-subtitle {
color: #A0AEC0;
font-size: 1.1rem;
text-align: center;
margin-bottom: 3rem;
font-weight: 400;
}
/* WebRTC component styling */
.webrtc-container {
display: flex;
flex-direction: column;
align-items: center;
gap: 1rem;
}
/* Hide default gradio elements */
.gradio-container .wrap,
.gradio-container .container,
footer {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
/* Custom button styling for WebRTC */
button {
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%) !important;
border: none !important;
border-radius: 50px !important;
padding: 1rem 2rem !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3) !important;
}
button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 15px 35px rgba(102, 126, 234, 0.4) !important;
}
/* Status indicators */
.status-dot {
width: 12px;
height: 12px;
border-radius: 50%;
background: #4ADE80;
box-shadow: 0 0 20px rgba(74, 222, 128, 0.5);
animation: pulse 2s ease-in-out infinite;
margin-right: 0.5rem;
}
.status-text {
color: #E2E8F0;
font-size: 0.9rem;
display: flex;
align-items: center;
justify-content: center;
margin-top: 1rem;
}
/* Hide default gradio styling */
.gradio-container .block {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
/* Responsive design */
@media (max-width: 768px) {
.ai-icon {
width: 100px;
height: 100px;
font-size: 2.5rem;
}
.ai-title {
font-size: 2rem;
}
.audio-waves {
height: 50px;
gap: 3px;
}
.wave-bar {
width: 3px;
}
}
</style>
"""
with gr.Blocks(theme=gr.themes.Glass(), css=custom_css) as demo:
with gr.Column(elem_classes=["main-container"]):
# Audio waves visualization
gr.HTML("""
<div class="audio-waves">
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
</div>
""")
# AI Icon
gr.HTML("""
<div class="ai-icon-container">
<div class="ai-icon">
AI✨
</div>
</div>
""")
# Title and Subtitle
gr.HTML("""
<h1 class="ai-title">AI Voice Agent</h1>
<p class="ai-subtitle">By SocioCare</p>
""")
# WebRTC Component
with gr.Column(elem_classes=["webrtc-container"]):
webrtc = WebRTC(
label="",
modality="audio",
mode="send-receive",
rtc_configuration=get_rtc_configuration(),
)
webrtc.stream(
MedicalGeminiHandler(),
inputs=[webrtc],
outputs=[webrtc],
time_limit=600, # 10 minutes consultation
concurrency_limit=3,
)
# Status indicator
gr.HTML("""
<div class="status-text">
<span class="status-dot"></span>
Ready to assist with your health consultation
</div>
""")
return demo
def launch(self):
# Try to find an available port starting from 7860
import socket
def find_free_port(start_port=7860):
"""Find a free port starting from the given port number"""
for port in range(start_port, start_port + 100):
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', port))
return port
except OSError:
continue
return None
# Get port from environment or find a free one
port = int(os.environ.get("PORT", 0)) if os.environ.get("PORT") else find_free_port()
if port is None:
print("Could not find an available port. Please set the PORT environment variable.")
return
print(f"Starting AI Voice Agent server on port {port}")
self.demo.launch(
server_name="0.0.0.0",
server_port=port,
ssl_verify=False,
ssl_keyfile=None,
ssl_certfile=None,
show_api=False,
quiet=False,
inbrowser=True # Automatically open in browser
)
if __name__ == "__main__":
app = SocioCareAIPreconsultation()
app.launch()