File size: 7,254 Bytes
bdec3d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py
import copy
import logging

import numpy as np
import torch

from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.transforms import TransformGen
from detectron2.structures import BitMasks, Instances

from pycocotools import mask as coco_mask

from modeling.utils import configurable

__all__ = ["COCOInstanceNewBaselineDatasetMapper"]


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


def build_transform_gen(cfg, is_train):
    """
    Create a list of default :class:`Augmentation` from config.
    Now it includes resizing and flipping.
    Returns:
        list[Augmentation]
    """
    assert is_train, "Only support training augmentation"
    cfg_input = cfg['INPUT']
    image_size = cfg_input['IMAGE_SIZE']
    min_scale = cfg_input['MIN_SCALE']
    max_scale = cfg_input['MAX_SCALE']

    augmentation = []

    if cfg_input['RANDOM_FLIP'] != "none":
        augmentation.append(
            T.RandomFlip(
                horizontal=cfg_input['RANDOM_FLIP'] == "horizontal",
                vertical=cfg_input['RANDOM_FLIP'] == "vertical",
            )
        )

    augmentation.extend([
        T.ResizeScale(
            min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
        ),
        T.FixedSizeCrop(crop_size=(image_size, image_size)),
    ])

    return augmentation


# This is specifically designed for the COCO dataset.
class COCOInstanceNewBaselineDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by MaskFormer.

    This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    @configurable
    def __init__(
        self,
        is_train=True,
        *,
        tfm_gens,
        image_format,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            is_train: for training or inference
            augmentations: a list of augmentations or deterministic transforms to apply
            tfm_gens: data augmentation
            image_format: an image format supported by :func:`detection_utils.read_image`.
        """
        self.tfm_gens = tfm_gens
        logging.getLogger(__name__).info(
            "[COCOInstanceNewBaselineDatasetMapper] Full TransformGens used in training: {}".format(str(self.tfm_gens))
        )

        self.img_format = image_format
        self.is_train = is_train
    
    @classmethod
    def from_config(cls, cfg, is_train=True):
        # Build augmentation
        tfm_gens = build_transform_gen(cfg, is_train)

        ret = {
            "is_train": is_train,
            "tfm_gens": tfm_gens,
            "image_format": cfg['INPUT']['FORMAT'],
        }
        return ret

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        # TODO: get padding mask
        # by feeding a "segmentation mask" to the same transforms
        padding_mask = np.ones(image.shape[:2])

        image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        # the crop transformation has default padding value 0 for segmentation
        padding_mask = transforms.apply_segmentation(padding_mask)
        padding_mask = ~ padding_mask.astype(bool)

        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
        dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask))

        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                # Let's always keep mask
                # if not self.mask_on:
                #     anno.pop("segmentation", None)
                anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            annos = [
                utils.transform_instance_annotations(obj, transforms, image_shape)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            # NOTE: does not support BitMask due to augmentation
            # Current BitMask cannot handle empty objects
            instances = utils.annotations_to_instances(annos, image_shape)
            # After transforms such as cropping are applied, the bounding box may no longer
            # tightly bound the object. As an example, imagine a triangle object
            # [(0,0), (2,0), (0,2)] cropped by a box [(1,0),(2,2)] (XYXY format). The tight
            # bounding box of the cropped triangle should be [(1,0),(2,1)], which is not equal to
            # the intersection of original bounding box and the cropping box.
            instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
            # Need to filter empty instances first (due to augmentation)
            instances = utils.filter_empty_instances(instances)
            # Generate masks from polygon
            h, w = instances.image_size
            # image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float)
            if hasattr(instances, 'gt_masks'):
                gt_masks = instances.gt_masks
                gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
                instances.gt_masks = gt_masks
            dataset_dict["instances"] = instances

        return dataset_dict