File size: 14,396 Bytes
bdec3d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py
import copy
import logging
import random

import numpy as np
import torch

from transformers import AutoTokenizer, LlamaForCausalLM

from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.transforms import TransformGen
from detectron2.structures import BitMasks, Boxes, Instances, BoxMode
from detectron2.structures.boxes import pairwise_iou
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.data import MetadataCatalog
from pycocotools import mask as coco_mask

from utils import prompt_engineering
from modeling.language import build_tokenizer
from modeling.language.misc import text_noun_with_prompt_all
from modeling.utils import configurable

from ..visual_sampler.sampler import build_shape_sampler

__all__ = ["COCOPanopticInteractiveDatasetMapper"]


def build_transform_gen(cfg, is_train):
    """
    Create a list of default :class:`Augmentation` from config.
    Now it includes resizing and flipping.
    Returns:
        list[Augmentation]
    """
    assert is_train, "Only support training augmentation"
    cfg_input = cfg['INPUT']
    image_size = cfg_input['IMAGE_SIZE']
    min_scale = cfg_input['MIN_SCALE']
    max_scale = cfg_input['MAX_SCALE']

    augmentation = []

    if cfg_input['RANDOM_FLIP'] != "none":
        augmentation.append(
            T.RandomFlip(
                horizontal=cfg_input['RANDOM_FLIP'] == "horizontal",
                vertical=cfg_input['RANDOM_FLIP'] == "vertical",
            )
        )

    augmentation.extend([
        T.ResizeScale(
            min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
        ),
        T.FixedSizeCrop(crop_size=(image_size, image_size)),
    ])
    
    return augmentation

def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks

# This is specifically designed for the COCO dataset.
class COCOPanopticInteractiveDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by MaskFormer.

    This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    @configurable
    def __init__(
        self,
        is_train=True,
        *,
        tfm_gens,
        image_format,
        caption_thres,
        grounding,
        lvis,
        lvis_thres,
        max_grounding_num,
        shape_sampler,
        retrieval,
        max_token_num,
        tokenizer,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            is_train: for training or inference
            augmentations: a list of augmentations or deterministic transforms to apply
            crop_gen: crop augmentation
            tfm_gens: data augmentation
            image_format: an image format supported by :func:`detection_utils.read_image`.
        """
        self.tfm_gens = tfm_gens
        logging.getLogger(__name__).info(
            "[COCOPanopticNewBaselineDatasetMapper] Full TransformGens used in training: {}".format(
                str(self.tfm_gens)
            )
        )

        self.img_format = image_format
        self.is_train = is_train
        self.caption_thres = caption_thres
        self.grounding = grounding
        self.lvis = lvis
        self.lvis_thres = lvis_thres
        self.max_grounding_num = max_grounding_num
        self.caption_similarity = torch.load(MetadataCatalog.get('logistic').get('caption_similarity_pth'))

        self.shape_sampler = shape_sampler

        self.retrieval = retrieval
        self.tokenizer = tokenizer
        self.max_token_num = max_token_num

    @classmethod
    def from_config(cls, cfg, is_train=True):
        # Build augmentation
        tfm_gens = build_transform_gen(cfg, is_train)
        shape_sampler = build_shape_sampler(cfg)

        retrieval = cfg['MODEL']['DECODER']['RETRIEVAL']['ENABLED']
        tokenizer, max_token_num = None, None
        if retrieval:
            lang_model = cfg['MODEL']['TEXT']['NAME']
            max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
            if 'llama' in lang_model:
                tokenizer = AutoTokenizer.from_pretrained(lang_model, padding_side='right')
                tokenizer.pad_token = tokenizer.eos_token
            else:
                tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])

        ret = {
            "is_train": is_train,
            "tfm_gens": tfm_gens,
            "image_format": cfg['INPUT']['FORMAT'],
            "caption_thres": cfg['MODEL']['DECODER']['CAPTION']['SIM_THRES'],
            "grounding": cfg['MODEL']['DECODER']['GROUNDING']['ENABLED'],
            "lvis": cfg['MODEL']['DECODER']['LVIS']['ENABLED'],
            "lvis_thres": cfg['MODEL']['DECODER']['LVIS']['THRES'],
            "max_grounding_num": cfg['MODEL']['DECODER']['GROUNDING']['MAX_LEN'],
            "shape_sampler": shape_sampler,
            "retrieval": retrieval,
            "max_token_num": max_token_num,
            "tokenizer": tokenizer,
        }
        return ret

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))

        # Add caption noun that is not in coco set to target
        captions = dataset_dict["captions"]
        captions_noun = []
        for caption in captions:
            nouns = np.array(text_noun_with_prompt_all(caption, phrase_prob=0.0, append_text=False)[1])
            cap_similarity = np.array([self.caption_similarity[noun][0] for noun in nouns])
            captions_noun.append(nouns[cap_similarity < self.caption_thres].tolist())
        dataset_dict["captions_noun"] = captions_noun
        
        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            return dataset_dict

        if "pan_seg_file_name" in dataset_dict:
            pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB")
            segments_info = dataset_dict["segments_info"]

            # apply the same transformation to panoptic segmentation
            pan_seg_gt = transforms.apply_segmentation(pan_seg_gt)

            from panopticapi.utils import rgb2id

            pan_seg_gt = rgb2id(pan_seg_gt)

            instances = Instances(image_shape)
            classes = []
            masks = []
            for segment_info in segments_info:
                class_id = segment_info["category_id"]
                if not segment_info["iscrowd"]:
                    classes.append(class_id)
                    masks.append(pan_seg_gt == segment_info["id"])
                        
            is_things = [COCO_CATEGORIES[idx]['isthing'] for idx in classes]
            classes = np.array(classes)
            is_things = np.array(is_things)
            instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
            instances.is_things = torch.tensor(is_things, dtype=torch.int64)

            if len(masks) == 0:
                # Some image does not have annotation (all ignored)
                masks = BitMasks(torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])))
                instances.gt_masks = masks
                instances.gt_boxes = Boxes(torch.zeros((0, 4)))
            else:
                masks = BitMasks(
                    torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
                )
                instances.gt_masks = masks
                instances.gt_boxes = masks.get_bounding_boxes()
            dataset_dict["instances"] = instances

        if self.lvis:
            annos = [
                utils.transform_instance_annotations({**obj, **{'bbox_mode':BoxMode.XYXY_ABS}}, transforms, image_shape)
                for obj in dataset_dict['lvis_info']
            ]
            # NOTE: does not support BitMask due to augmentation
            # Current BitMask cannot handle empty objects
            lvis_instances = utils.annotations_to_instances(annos, image_shape)
            lvis_instances = utils.filter_empty_instances(lvis_instances)
            # After transforms such as cropping are applied, the bounding box may no longer
            # tightly bound the object. As an example, imagine a triangle object
            # [(0,0), (2,0), (0,2)] cropped by a box [(1,0),(2,2)] (XYXY format). The tight
            # bounding box of the cropped triangle should be [(1,0),(2,1)], which is not equal to
            # the intersection of original bounding box and the cropping box.
            if len(lvis_instances) > 0:
                lvis_instances.gt_boxes = lvis_instances.gt_masks.get_bounding_boxes()
                h, w = instances.image_size
                lvis_instances_mask = convert_coco_poly_to_mask(lvis_instances.gt_masks.polygons, h, w).bool()
                coco_inter_lvis = pairwise_iou(instances.gt_boxes, lvis_instances.gt_boxes) > self.lvis_thres
                instances.gt_masks.tensor[coco_inter_lvis.max(dim=-1)[0]] = lvis_instances_mask[coco_inter_lvis.max(dim=-1)[1][coco_inter_lvis.max(dim=-1)[0]]]
                instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
                dataset_dict["instances"] = instances

        spatial_query_utils = self.shape_sampler(instances)
        dataset_dict['spatial_query'] = spatial_query_utils

        if self.retrieval:
            captions = dataset_dict['captions']
            tokens = self.tokenizer(
                captions, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
            )
            dataset_dict['tokens'] = {"input_ids": tokens["input_ids"], "attention_mask": tokens["attention_mask"]}

        if self.grounding:
            grounding_anno = dataset_dict['grounding_info']
            grounding_len = random.randint(1, self.max_grounding_num-1)
            if len(grounding_anno) > 0:
                masks_grd = []
                texts_grd = []
                mode = 'text'
                random.shuffle(grounding_anno)
                for ann in grounding_anno:
                    rle = coco_mask.frPyObjects(
                        ann['segmentation'], dataset_dict['height'], dataset_dict['width'])
                    m = coco_mask.decode(rle)
                    # sometimes there are multiple binary map (corresponding to multiple segs)
                    m = np.sum(m, axis=2)
                    m = m.astype(np.uint8)  # convert to np.uint8
                    m = transforms.apply_segmentation(m[:,:,None])[:,:,0]
                    masks_grd += [m]
                    # random select a sentence of a single annotation.
                    rand_index = random.randint(0, len(ann['sentences'])-1)
                    texts_grd += [ann['sentences'][rand_index]['raw'].lower()]
                max_len = min(grounding_len, len(texts_grd))
                indices = np.random.permutation(max_len)
                texts_grd = list(np.array(texts_grd)[indices])
                masks_grd = torch.tensor(np.stack(masks_grd)[indices])
                hash_grd = np.array([hash(txt) for txt in texts_grd])
            else:
                masks_grd = instances.gt_masks.tensor
                mode = 'class'
                if len(masks_grd) == 0:
                    masks_grd = torch.tensor([])
                    texts_grd = ['none']
                    hash_grd = np.array([hash(txt) for txt in texts_grd])
                else:
                    texts_grd = np.array([COCO_CATEGORIES[idx]['name'] for idx in classes])
                    hash_grd = np.array([hash(txt) for txt in texts_grd])
                    unique_hash_grd = np.unique(hash_grd)
                    np.random.shuffle(unique_hash_grd)
                    max_len = min(grounding_len, len(unique_hash_grd))
                    indices = np.random.permutation(max_len)                    
                    selected_unique_hash_grd = unique_hash_grd[indices]
                    selected_mask = np.in1d(hash_grd, selected_unique_hash_grd)
                    texts_grd = texts_grd[selected_mask]
                    hash_grd = hash_grd[selected_mask]
                    masks_grd = masks_grd[selected_mask]
                    texts_grd = [prompt_engineering(text.replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
                                        for text in texts_grd]
            groundings = {'masks': masks_grd, 'texts': texts_grd, 'mode': mode, 'hash': hash_grd}
            dataset_dict["groundings"] = groundings

        return dataset_dict