File size: 5,114 Bytes
bdec3d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging

import io
from PIL import Image
import numpy as np

import torch

from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data import MetadataCatalog

from modeling.language.LangEncoder import build_tokenizer
from modeling.utils import configurable


__all__ = ["VLPreDatasetMapper"]


def build_transform_gen(cfg, is_train):
    """
    Create a list of default :class:`Augmentation` from config.
    Now it includes resizing and flipping.
    Returns:
        list[Augmentation]
    """
    # The scope of vlp dataset may not need any augmentation.
    cfg_input = cfg['INPUT']
    image_size = cfg_input['IMAGE_SIZE']
    augmentation = []

    augmentation.extend([
        T.Resize((image_size, image_size)),
    ])
    
    return augmentation


# This is specifically designed for the COCO dataset.
class VLPreDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by MaskFormer.

    This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    @configurable
    def __init__(
        self,
        is_train=True,
        dataset_name=None,
        *,
        tfm_gens,
        image_format,
        tokenizer=None,
        max_token_num=None,
        device=None,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            is_train: for training or inference
            augmentations: a list of augmentations or deterministic transforms to apply
            crop_gen: crop augmentation
            tfm_gens: data augmentation
            image_format: an image format supported by :func:`detection_utils.read_image`.
        """
        self.tfm_gens = tfm_gens
        logging.getLogger(__name__).info(
            "[PretrainDatasetMapper] Full TransformGens used in training: {}".format(
                str(self.tfm_gens)
            )
        )

        self.img_format = image_format
        self.is_train = is_train

        self.all_arrows = MetadataCatalog.get(dataset_name).arrows

        self.tokenizer = tokenizer
        self.max_token_num = max_token_num
        self.device = device

    @classmethod
    def from_config(cls, cfg, is_train=True, dataset_name=None):
        # Build augmentation
        tfm_gens = build_transform_gen(cfg, is_train)

        tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
        max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
        device = cfg['device']

        ret = {
            "is_train": is_train,
            "dataset_name": dataset_name,
            "tfm_gens": tfm_gens,
            "image_format": cfg['INPUT']['FORMAT'],
            "tokenizer": tokenizer,
            "max_token_num": max_token_num,
            "device": device,
        }
        return ret

    def get_image(self, inp):
        image_bytes = io.BytesIO(inp)
        image_bytes.seek(0)
        return Image.open(image_bytes)

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        arr = self.all_arrows[dataset_dict['arr_id']]
        cur_id = dataset_dict['cur_id']
        image = self.get_image(arr['image'][cur_id].as_py())

        image = utils._apply_exif_orientation(image)
        image = utils.convert_PIL_to_numpy(image, self.img_format)
        utils.check_image_size(dataset_dict, image)

        image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))

        captions = dataset_dict['captions']
        tokens = self.tokenizer(
            captions, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
        )
        dataset_dict['tokens'] = {"input_ids": tokens["input_ids"], "attention_mask": tokens["attention_mask"]}
        return dataset_dict