|
|
|
|
|
import copy |
|
import logging |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.data.transforms import TransformGen |
|
from detectron2.structures import BitMasks, Boxes, Instances |
|
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES |
|
from detectron2.data import MetadataCatalog |
|
from pycocotools import mask |
|
|
|
from utils.prompt_engineering import prompt_engineering |
|
from modeling.language.misc import text_noun_with_prompt_all |
|
from modeling.utils import configurable |
|
|
|
__all__ = ["COCOPanopticNewBaselineDatasetMapper"] |
|
|
|
def build_transform_gen(cfg, is_train): |
|
""" |
|
Create a list of default :class:`Augmentation` from config. |
|
Now it includes resizing and flipping. |
|
Returns: |
|
list[Augmentation] |
|
""" |
|
assert is_train, "Only support training augmentation" |
|
cfg_input = cfg['INPUT'] |
|
image_size = cfg_input['IMAGE_SIZE'] |
|
min_scale = cfg_input['MIN_SCALE'] |
|
max_scale = cfg_input['MAX_SCALE'] |
|
|
|
augmentation = [] |
|
|
|
|
|
if cfg_input['RANDOM_FLIP'] != "none": |
|
augmentation.append( |
|
T.RandomFlip( |
|
horizontal=cfg_input['RANDOM_FLIP'] == "horizontal", |
|
vertical=cfg_input['RANDOM_FLIP'] == "vertical", |
|
) |
|
) |
|
|
|
augmentation.extend([ |
|
T.ResizeScale( |
|
min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size |
|
), |
|
T.FixedSizeCrop(crop_size=(image_size, image_size)), |
|
]) |
|
|
|
return augmentation |
|
|
|
|
|
|
|
class COCOPanopticNewBaselineDatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer. |
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
*, |
|
tfm_gens, |
|
image_format, |
|
caption_thres, |
|
grounding, |
|
max_grounding_num, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
crop_gen: crop augmentation |
|
tfm_gens: data augmentation |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
""" |
|
self.tfm_gens = tfm_gens |
|
logging.getLogger(__name__).info( |
|
"[COCOPanopticNewBaselineDatasetMapper] Full TransformGens used in training: {}".format( |
|
str(self.tfm_gens) |
|
) |
|
) |
|
|
|
self.img_format = image_format |
|
self.is_train = is_train |
|
self.caption_thres = caption_thres |
|
self.grounding = grounding |
|
self.max_grounding_num = max_grounding_num |
|
self.caption_similarity = torch.load(MetadataCatalog.get('logistic').get('caption_similarity_pth')) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True): |
|
|
|
tfm_gens = build_transform_gen(cfg, is_train) |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"tfm_gens": tfm_gens, |
|
"image_format": cfg['INPUT']['FORMAT'], |
|
"caption_thres": cfg['MODEL']['DECODER']['CAPTION']['SIM_THRES'], |
|
"grounding": cfg['MODEL']['DECODER']['GROUNDING']['ENABLED'], |
|
"max_grounding_num": cfg['MODEL']['DECODER']['GROUNDING']['MAX_LEN'], |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
image_shape = image.shape[:2] |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
|
|
captions = dataset_dict["captions"] |
|
captions_noun = [] |
|
for caption in captions: |
|
nouns = np.array(text_noun_with_prompt_all(caption, phrase_prob=0.0, append_text=False)[1]) |
|
cap_similarity = np.array([self.caption_similarity[noun][0] for noun in nouns]) |
|
captions_noun.append(nouns[cap_similarity < self.caption_thres].tolist()) |
|
dataset_dict["captions_noun"] = captions_noun |
|
|
|
if not self.is_train: |
|
|
|
dataset_dict.pop("annotations", None) |
|
return dataset_dict |
|
|
|
if "pan_seg_file_name" in dataset_dict: |
|
pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") |
|
segments_info = dataset_dict["segments_info"] |
|
|
|
|
|
pan_seg_gt = transforms.apply_segmentation(pan_seg_gt) |
|
|
|
from panopticapi.utils import rgb2id |
|
|
|
pan_seg_gt = rgb2id(pan_seg_gt) |
|
|
|
instances = Instances(image_shape) |
|
classes = [] |
|
masks = [] |
|
for segment_info in segments_info: |
|
class_id = segment_info["category_id"] |
|
if not segment_info["iscrowd"]: |
|
classes.append(class_id) |
|
masks.append(pan_seg_gt == segment_info["id"]) |
|
|
|
is_things = [COCO_CATEGORIES[idx]['isthing'] for idx in classes] |
|
classes = np.array(classes) |
|
is_things = np.array(is_things) |
|
instances.gt_classes = torch.tensor(classes, dtype=torch.int64) |
|
instances.is_things = torch.tensor(is_things, dtype=torch.int64) |
|
|
|
if len(masks) == 0: |
|
|
|
instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])) |
|
instances.gt_boxes = Boxes(torch.zeros((0, 4))) |
|
else: |
|
masks = BitMasks( |
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) |
|
) |
|
instances.gt_masks = masks.tensor |
|
instances.gt_boxes = masks.get_bounding_boxes() |
|
|
|
dataset_dict["instances"] = instances |
|
|
|
if self.grounding: |
|
grounding_anno = dataset_dict['grounding_info'] |
|
grounding_len = random.randint(1, self.max_grounding_num-1) |
|
if len(grounding_anno) > 0: |
|
masks_grd = [] |
|
texts_grd = [] |
|
mode = 'text' |
|
random.shuffle(grounding_anno) |
|
for ann in grounding_anno: |
|
rle = mask.frPyObjects( |
|
ann['segmentation'], dataset_dict['height'], dataset_dict['width']) |
|
m = mask.decode(rle) |
|
|
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
m = transforms.apply_segmentation(m[:,:,None])[:,:,0] |
|
masks_grd += [m] |
|
|
|
rand_index = random.randint(0, len(ann['sentences'])-1) |
|
texts_grd += [ann['sentences'][rand_index]['raw'].lower()] |
|
max_len = min(grounding_len, len(texts_grd)) |
|
indices = np.random.permutation(max_len) |
|
texts_grd = list(np.array(texts_grd)[indices]) |
|
masks_grd = torch.tensor(np.stack(masks_grd)[indices]) |
|
hash_grd = np.array([hash(txt) for txt in texts_grd]) |
|
else: |
|
masks_grd = instances.gt_masks |
|
mode = 'class' |
|
if len(masks_grd) == 0: |
|
masks_grd = torch.tensor([]) |
|
texts_grd = ['none'] |
|
hash_grd = np.array([hash(txt) for txt in texts_grd]) |
|
else: |
|
texts_grd = np.array([COCO_CATEGORIES[idx]['name'] for idx in classes]) |
|
hash_grd = np.array([hash(txt) for txt in texts_grd]) |
|
unique_hash_grd = np.unique(hash_grd) |
|
np.random.shuffle(unique_hash_grd) |
|
max_len = min(grounding_len, len(unique_hash_grd)) |
|
indices = np.random.permutation(max_len) |
|
selected_unique_hash_grd = unique_hash_grd[indices] |
|
selected_mask = np.in1d(hash_grd, selected_unique_hash_grd) |
|
texts_grd = texts_grd[selected_mask] |
|
hash_grd = hash_grd[selected_mask] |
|
masks_grd = masks_grd[selected_mask] |
|
texts_grd = [prompt_engineering(text.replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \ |
|
for text in texts_grd] |
|
groundings = {'masks': masks_grd, 'texts': texts_grd, 'mode': mode, 'hash': hash_grd} |
|
dataset_dict["groundings"] = groundings |
|
|
|
return dataset_dict |
|
|