|
|
|
import copy |
|
import logging |
|
|
|
import numpy as np |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.projects.point_rend import ColorAugSSDTransform |
|
from detectron2.structures import BitMasks, Instances, polygons_to_bitmask |
|
|
|
from modeling.utils import configurable |
|
|
|
__all__ = ["MaskFormerInstanceDatasetMapper"] |
|
|
|
|
|
class MaskFormerInstanceDatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer for instance segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
*, |
|
augmentations, |
|
image_format, |
|
size_divisibility, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
size_divisibility: pad image size to be divisible by this value |
|
""" |
|
self.is_train = is_train |
|
self.tfm_gens = augmentations |
|
self.img_format = image_format |
|
self.size_divisibility = size_divisibility |
|
|
|
logger = logging.getLogger(__name__) |
|
mode = "training" if is_train else "inference" |
|
logger.info(f"[{self.__class__.__name__}] Augmentations used in {mode}: {augmentations}") |
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True): |
|
|
|
cfg_input = cfg['INPUT'] |
|
augs = [ |
|
T.ResizeShortestEdge( |
|
cfg_input['MIN_SIZE_TRAIN'], |
|
cfg_input['MAX_SIZE_TRAIN'], |
|
cfg_input['MIN_SIZE_TRAIN_SAMPLING'], |
|
) |
|
] |
|
|
|
cfg_input_crop = cfg_input['CROP'] |
|
if cfg_input_crop['ENABLED']: |
|
augs.append( |
|
T.RandomCrop( |
|
cfg_input_crop['TYPE'], |
|
cfg_input_crop['SIZE'], |
|
) |
|
) |
|
if cfg_input['COLOR_AUG_SSD']: |
|
augs.append(ColorAugSSDTransform(img_format=cfg_input['FORMAT'])) |
|
augs.append(T.RandomFlip()) |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"augmentations": augs, |
|
"image_format": cfg_input['FORMAT'], |
|
"size_divisibility": cfg_input['SIZE_DIVISIBILITY'], |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
assert self.is_train, "MaskFormerPanopticDatasetMapper should only be used for training!" |
|
|
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
aug_input = T.AugInput(image) |
|
aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) |
|
image = aug_input.image |
|
|
|
|
|
assert "annotations" in dataset_dict |
|
for anno in dataset_dict["annotations"]: |
|
anno.pop("keypoints", None) |
|
|
|
annos = [ |
|
utils.transform_instance_annotations(obj, transforms, image.shape[:2]) |
|
for obj in dataset_dict.pop("annotations") |
|
if obj.get("iscrowd", 0) == 0 |
|
] |
|
|
|
if len(annos): |
|
assert "segmentation" in annos[0] |
|
segms = [obj["segmentation"] for obj in annos] |
|
masks = [] |
|
for segm in segms: |
|
if isinstance(segm, list): |
|
|
|
masks.append(polygons_to_bitmask(segm, *image.shape[:2])) |
|
elif isinstance(segm, dict): |
|
|
|
masks.append(mask_util.decode(segm)) |
|
elif isinstance(segm, np.ndarray): |
|
assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format( |
|
segm.ndim |
|
) |
|
|
|
masks.append(segm) |
|
else: |
|
raise ValueError( |
|
"Cannot convert segmentation of type '{}' to BitMasks!" |
|
"Supported types are: polygons as list[list[float] or ndarray]," |
|
" COCO-style RLE as a dict, or a binary segmentation mask " |
|
" in a 2D numpy array of shape HxW.".format(type(segm)) |
|
) |
|
|
|
|
|
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
masks = [torch.from_numpy(np.ascontiguousarray(x)) for x in masks] |
|
|
|
classes = [int(obj["category_id"]) for obj in annos] |
|
classes = torch.tensor(classes, dtype=torch.int64) |
|
|
|
if self.size_divisibility > 0: |
|
image_size = (image.shape[-2], image.shape[-1]) |
|
padding_size = [ |
|
0, |
|
self.size_divisibility - image_size[1], |
|
0, |
|
self.size_divisibility - image_size[0], |
|
] |
|
|
|
image = F.pad(image, padding_size, value=128).contiguous() |
|
|
|
masks = [F.pad(x, padding_size, value=0).contiguous() for x in masks] |
|
|
|
image_shape = (image.shape[-2], image.shape[-1]) |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = image |
|
|
|
|
|
instances = Instances(image_shape) |
|
instances.gt_classes = classes |
|
if len(masks) == 0: |
|
|
|
instances.gt_masks = torch.zeros((0, image.shape[-2], image.shape[-1])) |
|
else: |
|
masks = BitMasks(torch.stack(masks)) |
|
instances.gt_masks = masks.tensor |
|
|
|
dataset_dict["instances"] = instances |
|
|
|
return dataset_dict |
|
|