|
|
|
import copy |
|
import logging |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.structures import BitMasks, Instances |
|
|
|
from .mask_former_semantic_dataset_mapper import MaskFormerSemanticDatasetMapper |
|
from modeling.utils import configurable |
|
|
|
__all__ = ["MaskFormerPanopticDatasetMapper"] |
|
|
|
|
|
class MaskFormerPanopticDatasetMapper(MaskFormerSemanticDatasetMapper): |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer for panoptic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
*, |
|
augmentations, |
|
image_format, |
|
ignore_label, |
|
size_divisibility, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
ignore_label: the label that is ignored to evaluation |
|
size_divisibility: pad image size to be divisible by this value |
|
""" |
|
super().__init__( |
|
is_train, |
|
augmentations=augmentations, |
|
image_format=image_format, |
|
ignore_label=ignore_label, |
|
size_divisibility=size_divisibility, |
|
) |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
assert self.is_train, "MaskFormerPanopticDatasetMapper should only be used for training!" |
|
|
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
|
|
if "sem_seg_file_name" in dataset_dict: |
|
|
|
sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name")).astype("double") |
|
else: |
|
sem_seg_gt = None |
|
|
|
|
|
if "pan_seg_file_name" in dataset_dict: |
|
pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") |
|
segments_info = dataset_dict["segments_info"] |
|
else: |
|
pan_seg_gt = None |
|
segments_info = None |
|
|
|
if pan_seg_gt is None: |
|
raise ValueError( |
|
"Cannot find 'pan_seg_file_name' for panoptic segmentation dataset {}.".format( |
|
dataset_dict["file_name"] |
|
) |
|
) |
|
|
|
aug_input = T.AugInput(image, sem_seg=sem_seg_gt) |
|
aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) |
|
image = aug_input.image |
|
if sem_seg_gt is not None: |
|
sem_seg_gt = aug_input.sem_seg |
|
|
|
|
|
pan_seg_gt = transforms.apply_segmentation(pan_seg_gt) |
|
|
|
from panopticapi.utils import rgb2id |
|
|
|
pan_seg_gt = rgb2id(pan_seg_gt) |
|
|
|
|
|
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
if sem_seg_gt is not None: |
|
sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long")) |
|
pan_seg_gt = torch.as_tensor(pan_seg_gt.astype("long")) |
|
|
|
if self.size_divisibility > 0: |
|
image_size = (image.shape[-2], image.shape[-1]) |
|
padding_size = [ |
|
0, |
|
self.size_divisibility - image_size[1], |
|
0, |
|
self.size_divisibility - image_size[0], |
|
] |
|
image = F.pad(image, padding_size, value=128).contiguous() |
|
if sem_seg_gt is not None: |
|
sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous() |
|
pan_seg_gt = F.pad( |
|
pan_seg_gt, padding_size, value=0 |
|
).contiguous() |
|
|
|
image_shape = (image.shape[-2], image.shape[-1]) |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = image |
|
if sem_seg_gt is not None: |
|
dataset_dict["sem_seg"] = sem_seg_gt.long() |
|
|
|
if "annotations" in dataset_dict: |
|
raise ValueError("Pemantic segmentation dataset should not have 'annotations'.") |
|
|
|
|
|
pan_seg_gt = pan_seg_gt.numpy() |
|
instances = Instances(image_shape) |
|
classes = [] |
|
masks = [] |
|
for segment_info in segments_info: |
|
class_id = segment_info["category_id"] |
|
if not segment_info["iscrowd"]: |
|
classes.append(class_id) |
|
masks.append(pan_seg_gt == segment_info["id"]) |
|
|
|
classes = np.array(classes) |
|
instances.gt_classes = torch.tensor(classes, dtype=torch.int64) |
|
if len(masks) == 0: |
|
|
|
instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])) |
|
else: |
|
masks = BitMasks( |
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) |
|
) |
|
instances.gt_masks = masks.tensor |
|
|
|
dataset_dict["instances"] = instances |
|
|
|
return dataset_dict |
|
|