|
|
|
import copy |
|
import logging |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.projects.point_rend import ColorAugSSDTransform |
|
from detectron2.structures import BitMasks, Instances |
|
|
|
from modeling.utils import configurable |
|
|
|
__all__ = ["MaskFormerSemanticDatasetMapper"] |
|
|
|
class MaskFormerSemanticDatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer for semantic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
*, |
|
augmentations, |
|
image_format, |
|
ignore_label, |
|
size_divisibility, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
ignore_label: the label that is ignored to evaluation |
|
size_divisibility: pad image size to be divisible by this value |
|
""" |
|
self.is_train = is_train |
|
self.tfm_gens = augmentations |
|
self.img_format = image_format |
|
self.ignore_label = ignore_label |
|
self.size_divisibility = size_divisibility |
|
|
|
logger = logging.getLogger(__name__) |
|
mode = "training" if is_train else "inference" |
|
logger.info(f"[{self.__class__.__name__}] Augmentations used in {mode}: {augmentations}") |
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True): |
|
cfg_input = cfg['INPUT'] |
|
|
|
augs = [ |
|
T.ResizeShortestEdge( |
|
cfg_input['MIN_SIZE_TRAIN'], |
|
cfg_input['MAX_SIZE_TRAIN'], |
|
cfg_input['MIN_SIZE_TRAIN_SAMPLING'], |
|
) |
|
] |
|
cfg_input_crop = cfg_input['CROP'] |
|
if cfg_input_crop['ENABLED']: |
|
augs.append( |
|
T.RandomCrop_CategoryAreaConstraint( |
|
cfg_input_crop['TYPE'], |
|
cfg_input_crop['SIZE'], |
|
cfg_input_crop['SINGLE_CATEGORY_MAX_AREA'], |
|
cfg_input['IGNORE_VALUE'], |
|
) |
|
) |
|
if cfg_input['COLOR_AUG_SSD']: |
|
augs.append(ColorAugSSDTransform(img_format=cfg_input['FORMAT'])) |
|
augs.append(T.RandomFlip()) |
|
|
|
|
|
dataset_names = cfg['DATASETS']['TRAIN'] |
|
meta = MetadataCatalog.get(dataset_names[0]) |
|
ignore_label = meta.ignore_label |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"augmentations": augs, |
|
"image_format": cfg_input['FORMAT'], |
|
"ignore_label": ignore_label, |
|
"size_divisibility": cfg_input['SIZE_DIVISIBILITY'], |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
assert self.is_train, "MaskFormerSemanticDatasetMapper should only be used for training!" |
|
|
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
if "sem_seg_file_name" in dataset_dict: |
|
|
|
sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name")).astype("double") |
|
else: |
|
sem_seg_gt = None |
|
|
|
if sem_seg_gt is None: |
|
raise ValueError( |
|
"Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format( |
|
dataset_dict["file_name"] |
|
) |
|
) |
|
|
|
aug_input = T.AugInput(image, sem_seg=sem_seg_gt) |
|
aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) |
|
image = aug_input.image |
|
sem_seg_gt = aug_input.sem_seg |
|
|
|
|
|
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
if sem_seg_gt is not None: |
|
sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long")) |
|
|
|
if self.size_divisibility > 0: |
|
image_size = (image.shape[-2], image.shape[-1]) |
|
padding_size = [ |
|
0, |
|
self.size_divisibility - image_size[1], |
|
0, |
|
self.size_divisibility - image_size[0], |
|
] |
|
image = F.pad(image, padding_size, value=128).contiguous() |
|
if sem_seg_gt is not None: |
|
sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous() |
|
|
|
image_shape = (image.shape[-2], image.shape[-1]) |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = image |
|
|
|
if sem_seg_gt is not None: |
|
dataset_dict["sem_seg"] = sem_seg_gt.long() |
|
|
|
if "annotations" in dataset_dict: |
|
raise ValueError("Semantic segmentation dataset should not have 'annotations'.") |
|
|
|
|
|
if sem_seg_gt is not None: |
|
sem_seg_gt = sem_seg_gt.numpy() |
|
instances = Instances(image_shape) |
|
classes = np.unique(sem_seg_gt) |
|
|
|
classes = classes[classes != self.ignore_label] |
|
instances.gt_classes = torch.tensor(classes, dtype=torch.int64) |
|
|
|
masks = [] |
|
for class_id in classes: |
|
masks.append(sem_seg_gt == class_id) |
|
|
|
if len(masks) == 0: |
|
|
|
instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1])) |
|
else: |
|
masks = BitMasks( |
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) |
|
) |
|
instances.gt_masks = masks.tensor |
|
|
|
dataset_dict["instances"] = instances |
|
|
|
return dataset_dict |
|
|