SEEM / datasets /dataset_mappers /refcoco_dataset_mapper.py
skallewag's picture
Upload 247 files
bdec3d7 verified
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import random
import scipy.io
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
from pycocotools import mask
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from modeling.utils import configurable
__all__ = ["RefCOCODatasetMapper"]
def build_transform_gen(cfg, is_train):
"""
Create a list of default :class:`Augmentation` from config.
Now it includes resizing and flipping.
Returns:
list[Augmentation]
"""
assert is_train, "Only support training augmentation"
cfg_input = cfg['INPUT']
image_size = cfg_input['IMAGE_SIZE']
min_scale = cfg_input['MIN_SCALE']
max_scale = cfg_input['MAX_SCALE']
augmentation = []
if cfg_input['RANDOM_FLIP'] != "none":
augmentation.append(
T.RandomFlip(
horizontal=cfg_input['RANDOM_FLIP'] == "horizontal",
vertical=cfg_input['RANDOM_FLIP'] == "vertical",
)
)
augmentation.extend([
T.ResizeScale(
min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
),
T.FixedSizeCrop(crop_size=(image_size, image_size)),
])
return augmentation
def build_transform_gen_se(cfg, is_train):
min_scale = cfg['INPUT']['MIN_SIZE_TEST']
max_scale = cfg['INPUT']['MAX_SIZE_TEST']
augmentation = []
augmentation.extend([
T.ResizeShortestEdge(
min_scale, max_size=max_scale
),
])
return augmentation
# This is specifically designed for the COCO dataset.
class RefCOCODatasetMapper:
"""
A callable which takes a dataset dict in Detectron2 Dataset format,
and map it into a format used by MaskFormer.
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
The callable currently does the following:
1. Read the image from "file_name"
2. Applies geometric transforms to the image and annotation
3. Find and applies suitable cropping to the image and annotation
4. Prepare image and annotation to Tensors
"""
@configurable
def __init__(
self,
is_train=True,
tfm_gens=None,
image_format=None,
min_size_test=None,
max_size_test=None,
mean=None,
std=None,
):
"""
NOTE: this interface is experimental.
Args:
is_train: for training or inference
augmentations: a list of augmentations or deterministic transforms to apply
tfm_gens: data augmentation
image_format: an image format supported by :func:`detection_utils.read_image`.
"""
self.tfm_gens = tfm_gens
self.img_format = image_format
self.is_train = is_train
self.min_size_test = min_size_test
self.max_size_test = max_size_test
self.pixel_mean = torch.tensor(mean)[:,None,None]
self.pixel_std = torch.tensor(std)[:,None,None]
# t = []
# t.append(T.ResizeShortestEdge(min_size_test, max_size=max_size_test))
# self.transform = transforms.Compose(t)
@classmethod
def from_config(cls, cfg, is_train=True):
# Build augmentation
if is_train:
tfm_gens = build_transform_gen(cfg, is_train)
else:
tfm_gens = build_transform_gen_se(cfg, is_train)
ret = {
"is_train": is_train,
"tfm_gens": tfm_gens,
"image_format": cfg['INPUT'].get('FORMAT', 'RGB'),
"min_size_test": cfg['INPUT']['MIN_SIZE_TEST'],
"max_size_test": cfg['INPUT']['MAX_SIZE_TEST'],
"mean": cfg['INPUT']['PIXEL_MEAN'],
"std": cfg['INPUT']['PIXEL_STD'],
}
return ret
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
file_name = dataset_dict['file_name']
if self.is_train == False:
image = utils.read_image(file_name, format=self.img_format)
utils.check_image_size(dataset_dict, image)
image, _ = T.apply_transform_gens(self.tfm_gens, image)
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
grounding_anno = dataset_dict['grounding_info']
assert len(grounding_anno) > 0
masks_grd = []
texts_grd = []
boxes_grd = []
for ann in grounding_anno:
rle = mask.frPyObjects(
ann['segmentation'], dataset_dict['height'], dataset_dict['width'])
m = mask.decode(rle)
# sometimes there are multiple binary map (corresponding to multiple segs)
m = np.sum(m, axis=2)
m = m.astype(np.uint8) # convert to np.uint8
masks_grd += [m]
texts_grd.append([x['raw'].lower() for x in ann['sentences']])
boxes_grd.append(ann['bbox']) # xywh
masks_grd = torch.from_numpy(np.stack(masks_grd))
boxes_grd = torch.tensor(boxes_grd)
groundings = {'masks': masks_grd, 'texts': texts_grd, 'boxes': boxes_grd}
dataset_dict["groundings"] = groundings
else:
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
image_shape = image.shape[:2] # h, w
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
grounding_anno = dataset_dict['grounding_info']
assert len(grounding_anno) > 0
masks_grd = []
texts_grd = []
boxes_grd = []
hash_grd = []
for ann in grounding_anno:
rle = mask.frPyObjects(
ann['segmentation'], dataset_dict['height'], dataset_dict['width'])
m = mask.decode(rle)
# sometimes there are multiple binary map (corresponding to multiple segs)
m = np.sum(m, axis=2)
m = m.astype(np.uint8) # convert to np.uint8
m = transforms.apply_segmentation(m[:,:,None])[:,:,0]
masks_grd += [m]
rand_id = random.randint(0, len(ann['sentences'])-1)
texts_grd.append(ann['sentences'][rand_id]['raw'].lower())
hash_grd.append(hash(ann['sentences'][rand_id]['raw'].lower()))
masks_grd = torch.from_numpy(np.stack(masks_grd))
boxes_grd = torch.tensor(boxes_grd)
groundings = {'masks': masks_grd, 'texts': texts_grd, 'hash': hash_grd, 'mode': 'text'}
dataset_dict["groundings"] = groundings
return dataset_dict