|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import random |
|
|
|
import scipy.io |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
from torchvision import transforms |
|
|
|
from pycocotools import mask |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
|
|
from modeling.utils import configurable |
|
|
|
__all__ = ["RefCOCODatasetMapper"] |
|
|
|
def build_transform_gen(cfg, is_train): |
|
""" |
|
Create a list of default :class:`Augmentation` from config. |
|
Now it includes resizing and flipping. |
|
Returns: |
|
list[Augmentation] |
|
""" |
|
assert is_train, "Only support training augmentation" |
|
cfg_input = cfg['INPUT'] |
|
image_size = cfg_input['IMAGE_SIZE'] |
|
min_scale = cfg_input['MIN_SCALE'] |
|
max_scale = cfg_input['MAX_SCALE'] |
|
|
|
augmentation = [] |
|
|
|
|
|
if cfg_input['RANDOM_FLIP'] != "none": |
|
augmentation.append( |
|
T.RandomFlip( |
|
horizontal=cfg_input['RANDOM_FLIP'] == "horizontal", |
|
vertical=cfg_input['RANDOM_FLIP'] == "vertical", |
|
) |
|
) |
|
|
|
augmentation.extend([ |
|
T.ResizeScale( |
|
min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size |
|
), |
|
T.FixedSizeCrop(crop_size=(image_size, image_size)), |
|
]) |
|
|
|
return augmentation |
|
|
|
def build_transform_gen_se(cfg, is_train): |
|
min_scale = cfg['INPUT']['MIN_SIZE_TEST'] |
|
max_scale = cfg['INPUT']['MAX_SIZE_TEST'] |
|
|
|
augmentation = [] |
|
augmentation.extend([ |
|
T.ResizeShortestEdge( |
|
min_scale, max_size=max_scale |
|
), |
|
]) |
|
return augmentation |
|
|
|
|
|
class RefCOCODatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer. |
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
tfm_gens=None, |
|
image_format=None, |
|
min_size_test=None, |
|
max_size_test=None, |
|
mean=None, |
|
std=None, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
tfm_gens: data augmentation |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
""" |
|
self.tfm_gens = tfm_gens |
|
self.img_format = image_format |
|
self.is_train = is_train |
|
self.min_size_test = min_size_test |
|
self.max_size_test = max_size_test |
|
self.pixel_mean = torch.tensor(mean)[:,None,None] |
|
self.pixel_std = torch.tensor(std)[:,None,None] |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True): |
|
|
|
if is_train: |
|
tfm_gens = build_transform_gen(cfg, is_train) |
|
else: |
|
tfm_gens = build_transform_gen_se(cfg, is_train) |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"tfm_gens": tfm_gens, |
|
"image_format": cfg['INPUT'].get('FORMAT', 'RGB'), |
|
"min_size_test": cfg['INPUT']['MIN_SIZE_TEST'], |
|
"max_size_test": cfg['INPUT']['MAX_SIZE_TEST'], |
|
"mean": cfg['INPUT']['PIXEL_MEAN'], |
|
"std": cfg['INPUT']['PIXEL_STD'], |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
file_name = dataset_dict['file_name'] |
|
if self.is_train == False: |
|
image = utils.read_image(file_name, format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
image, _ = T.apply_transform_gens(self.tfm_gens, image) |
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
grounding_anno = dataset_dict['grounding_info'] |
|
assert len(grounding_anno) > 0 |
|
masks_grd = [] |
|
texts_grd = [] |
|
boxes_grd = [] |
|
for ann in grounding_anno: |
|
rle = mask.frPyObjects( |
|
ann['segmentation'], dataset_dict['height'], dataset_dict['width']) |
|
m = mask.decode(rle) |
|
|
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
masks_grd += [m] |
|
texts_grd.append([x['raw'].lower() for x in ann['sentences']]) |
|
boxes_grd.append(ann['bbox']) |
|
masks_grd = torch.from_numpy(np.stack(masks_grd)) |
|
boxes_grd = torch.tensor(boxes_grd) |
|
|
|
groundings = {'masks': masks_grd, 'texts': texts_grd, 'boxes': boxes_grd} |
|
dataset_dict["groundings"] = groundings |
|
else: |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
image_shape = image.shape[:2] |
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
grounding_anno = dataset_dict['grounding_info'] |
|
assert len(grounding_anno) > 0 |
|
masks_grd = [] |
|
texts_grd = [] |
|
boxes_grd = [] |
|
hash_grd = [] |
|
for ann in grounding_anno: |
|
rle = mask.frPyObjects( |
|
ann['segmentation'], dataset_dict['height'], dataset_dict['width']) |
|
m = mask.decode(rle) |
|
|
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
m = transforms.apply_segmentation(m[:,:,None])[:,:,0] |
|
masks_grd += [m] |
|
rand_id = random.randint(0, len(ann['sentences'])-1) |
|
texts_grd.append(ann['sentences'][rand_id]['raw'].lower()) |
|
hash_grd.append(hash(ann['sentences'][rand_id]['raw'].lower())) |
|
masks_grd = torch.from_numpy(np.stack(masks_grd)) |
|
boxes_grd = torch.tensor(boxes_grd) |
|
groundings = {'masks': masks_grd, 'texts': texts_grd, 'hash': hash_grd, 'mode': 'text'} |
|
dataset_dict["groundings"] = groundings |
|
return dataset_dict |