|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import json |
|
import logging |
|
|
|
pth = '/'.join(sys.path[0].split('/')[:-1]) |
|
sys.path.insert(0, pth) |
|
|
|
from PIL import Image |
|
import numpy as np |
|
np.random.seed(27) |
|
|
|
import torch |
|
from torchvision import transforms |
|
|
|
from utils.arguments import load_opt_command |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.utils.colormap import random_color |
|
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES |
|
from modeling.BaseModel import BaseModel |
|
from modeling import build_model |
|
from utils.visualizer import Visualizer |
|
from utils.distributed import init_distributed |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def main(args=None): |
|
''' |
|
Main execution point for PyLearn. |
|
''' |
|
opt, cmdline_args = load_opt_command(args) |
|
if cmdline_args.user_dir: |
|
absolute_user_dir = os.path.abspath(cmdline_args.user_dir) |
|
opt['base_path'] = absolute_user_dir |
|
|
|
opt = init_distributed(opt) |
|
|
|
|
|
pretrained_pth = os.path.join(opt['RESUME_FROM']) |
|
output_root = './output' |
|
image_pth = 'inference/images/fruit.jpg' |
|
|
|
text = [['The larger watermelon.'], ['The front white flower.'], ['White tea pot.'], ['Flower bunch.'], ['white vase.'], ['The left peach.'], ['The brown knife.']] |
|
|
|
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda() |
|
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=False) |
|
|
|
t = [] |
|
t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) |
|
transform = transforms.Compose(t) |
|
|
|
metadata = MetadataCatalog.get('ade20k_panoptic_train') |
|
model.model.metadata = metadata |
|
|
|
with torch.no_grad(): |
|
image_ori = Image.open(image_pth) |
|
width = image_ori.size[0] |
|
height = image_ori.size[1] |
|
image = transform(image_ori) |
|
image = np.asarray(image) |
|
image_ori = np.asarray(image_ori) |
|
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda() |
|
|
|
batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': text}}] |
|
outputs = model.model.evaluate_grounding(batch_inputs, None) |
|
visual = Visualizer(image_ori, metadata=metadata) |
|
|
|
grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy() |
|
for idx, mask in enumerate(grd_mask): |
|
demo = visual.draw_binary_mask(mask, color=random_color(rgb=True, maximum=1).astype(np.int).tolist(), text=text[idx], alpha=0.3) |
|
|
|
output_folder = os.path.join(os.path.join(output_root)) |
|
if not os.path.exists(output_folder): |
|
os.makedirs(output_folder) |
|
demo.save(os.path.join(output_folder, 'refseg.png')) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
sys.exit(0) |