|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import logging |
|
|
|
pth = '/'.join(sys.path[0].split('/')[:-1]) |
|
sys.path.insert(0, pth) |
|
|
|
from PIL import Image |
|
import numpy as np |
|
np.random.seed(1) |
|
|
|
import torch |
|
from torchvision import transforms |
|
|
|
from utils.arguments import load_opt_command |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.utils.colormap import random_color |
|
from modeling.BaseModel import BaseModel |
|
from modeling import build_model |
|
from utils.visualizer import Visualizer |
|
from utils.distributed import init_distributed |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def main(args=None): |
|
''' |
|
Main execution point for PyLearn. |
|
''' |
|
opt, cmdline_args = load_opt_command(args) |
|
if cmdline_args.user_dir: |
|
absolute_user_dir = os.path.abspath(cmdline_args.user_dir) |
|
opt['base_path'] = absolute_user_dir |
|
opt = init_distributed(opt) |
|
|
|
|
|
pretrained_pth = os.path.join(opt['RESUME_FROM']) |
|
output_root = './output' |
|
image_pth = 'inference/images/animals.png' |
|
|
|
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda() |
|
|
|
t = [] |
|
t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) |
|
transform = transforms.Compose(t) |
|
|
|
stuff_classes = ['zebra','antelope','giraffe','ostrich','sky','water','grass','sand','tree'] |
|
stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int).tolist() for _ in range(len(stuff_classes))] |
|
stuff_dataset_id_to_contiguous_id = {x:x for x in range(len(stuff_classes))} |
|
|
|
MetadataCatalog.get("demo").set( |
|
stuff_colors=stuff_colors, |
|
stuff_classes=stuff_classes, |
|
stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id, |
|
) |
|
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(stuff_classes + ["background"], is_eval=True) |
|
metadata = MetadataCatalog.get('demo') |
|
model.model.metadata = metadata |
|
model.model.sem_seg_head.num_classes = len(stuff_classes) |
|
|
|
with torch.no_grad(): |
|
image_ori = Image.open(image_pth).convert("RGB") |
|
width = image_ori.size[0] |
|
height = image_ori.size[1] |
|
image = transform(image_ori) |
|
image = np.asarray(image) |
|
image_ori = np.asarray(image_ori) |
|
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda() |
|
|
|
batch_inputs = [{'image': images, 'height': height, 'width': width}] |
|
outputs = model.forward(batch_inputs) |
|
visual = Visualizer(image_ori, metadata=metadata) |
|
|
|
sem_seg = outputs[-1]['sem_seg'].max(0)[1] |
|
demo = visual.draw_sem_seg(sem_seg.cpu(), alpha=0.5) |
|
|
|
if not os.path.exists(output_root): |
|
os.makedirs(output_root) |
|
demo.save(os.path.join(output_root, 'sem.png')) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
sys.exit(0) |