Spaces:
Running
Running
File size: 1,933 Bytes
ac1b201 5eab736 ac1b201 ecfc393 5d7bc4a ecfc393 d2a61cf ecfc393 5eab736 ecfc393 d2a61cf ecfc393 5d7bc4a ac1b201 ecfc393 ac1b201 ecfc393 ac1b201 ecfc393 5d7bc4a 5eab736 d2a61cf 5d7bc4a d2a61cf ac1b201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Final app.py using FastAPI wrapper
from fastapi import FastAPI
import gradio as gr
import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import os
# --- 1. Load the Model ---
try:
model_path = hf_hub_download(
repo_id="skibi11/leukolook-eye-detector",
filename="MobileNetV1_best.keras"
)
model = tf.keras.models.load_model(model_path)
print("--- MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
print(f"--- ERROR LOADING MODEL: {e} ---")
raise RuntimeError(f"Failed to load model: {e}")
# --- 2. Pre-processing & Prediction Logic (remains the same) ---
def preprocess_image(img_pil):
img = img_pil.resize((224, 224))
img_array = np.array(img)
if img_array.ndim == 2: img_array = np.stack((img_array,)*3, axis=-1)
if img_array.shape[-1] == 4: img_array = img_array[..., :3]
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
def predict(image_from_gradio):
if not isinstance(image_from_gradio, np.ndarray):
return {"error": "Invalid input type. Expected an image."}
try:
pil_image = Image.fromarray(image_from_gradio)
processed_image = preprocess_image(pil_image)
prediction = model.predict(processed_image)
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
return confidences
except Exception as e:
return {"error": f"Error during prediction: {e}"}
# --- 3. Create the Gradio Interface (without launching) ---
gradio_interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy"),
outputs=gr.JSON(),
api_name="predict"
)
# --- 4. Create the FastAPI app and mount the Gradio app to it ---
app = FastAPI()
app = gr.mount_gradio_app(app, gradio_interface, path="/") |