Spaces:
Running
Running
File size: 2,433 Bytes
d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 d2a61cf ecfc393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# Final app.py for your Hugging Face Space
import gradio as gr
import tensorflow as tf # Import tensorflow directly
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import os
# --- 1. Load the Model from your other Hugging Face Repo ---
model = None
print("--- SCRIPT START ---")
try:
print("Downloading Keras model from the Hub...")
model_path = hf_hub_download(
repo_id="skibi11/leukolook-eye-detector",
filename="MobileNetV1_best.keras"
)
print(f"Model downloaded to: {model_path}")
print("Loading model with tf.keras.models.load_model...")
# This is a more robust way to load the model
model = tf.keras.models.load_model(model_path)
print("--- MODEL LOADED SUCCESSFULLY! ---")
model.summary() # Print a summary of the model to confirm it's loaded
except Exception as e:
print("--- AN ERROR OCCURRED DURING MODEL LOADING ---")
print(f"Error Type: {type(e)}")
print(f"Error Message: {e}")
# Also print the traceback for more details
import traceback
traceback.print_exc()
print("--- END OF ERROR ---")
# --- 2. Define the Pre-processing Logic ---
def preprocess_image(img_pil):
img = img_pil.resize((224, 224))
img_array = np.array(img)
if img_array.ndim == 2:
img_array = np.stack((img_array,)*3, axis=-1)
# Ensure image has 3 channels if it's not
if img_array.shape[-1] == 4:
img_array = img_array[..., :3]
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
# --- 3. Define the Prediction Function ---
def predict(image_array):
if model is None:
raise gr.Error("Model is not loaded. Please check the Space logs for errors.")
try:
pil_image = Image.fromarray(image_array.astype('uint8'), 'RGB')
processed_image = preprocess_image(pil_image)
prediction = model.predict(processed_image)
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
return confidences
except Exception as e:
raise gr.Error(f"Error during prediction: {e}")
# --- 4. Create and Launch the Gradio API ---
gr.Interface(
fn=predict,
inputs=gr.Image(),
outputs="json",
title="LeukoLook Eye Detector API",
description="API for the LeukoLook project."
).launch() |