Spaces:
Running
Running
File size: 1,620 Bytes
ecfc393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
from tensorflow.keras.models import load_model
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
# --- 1. Load the Model from your other Hugging Face Repo ---
try:
model_path = hf_hub_download(
repo_id="skibi11/leukolook-eye-detector",
filename="MobileNetV1_best.keras"
)
model = load_model(model_path)
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {e}")
model = None
# --- 2. Define the Pre-processing Logic ---
def preprocess_image(img_pil):
# This MUST match your training pre-processing
img = img_pil.resize((224, 224))
img_array = np.array(img)
if img_array.ndim == 2:
img_array = np.stack((img_array,)*3, axis=-1)
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
# --- 3. Define the Prediction Function ---
def predict(image_array):
if model is None:
raise gr.Error("Model is not loaded. Please check the Space logs.")
pil_image = Image.fromarray(image_array.astype('uint8'), 'RGB')
processed_image = preprocess_image(pil_image)
prediction = model.predict(processed_image)
# Convert prediction to a JSON-friendly format
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
return confidences
# --- 4. Create and Launch the Gradio API ---
gr.Interface(
fn=predict,
inputs=gr.Image(),
outputs="json",
title="LeukoLook Eye Detector API"
).launch() |