leukolook-api / app.py
skibi11's picture
included the Roboflow calls and image manipulation logic
4611e20 verified
raw
history blame
6.16 kB
# The Complete and Final app.py for Hugging Face Space
import os
import cv2
import tempfile
import numpy as np
import uvicorn
from PIL import Image
from inference_sdk import InferenceHTTPClient
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import gradio as gr
import tensorflow as tf
from huggingface_hub import hf_hub_download
# --- 1. Configuration and Model Loading ---
# Note: Ensure ROBOFLOW_API_KEY is set as a secret in your Space settings
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
model = None
try:
model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras")
model = tf.keras.models.load_model(model_path)
print("--- MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
print(f"--- ERROR LOADING LEUKOCORIA MODEL: {e} ---")
raise RuntimeError(f"Could not load leukocoria model: {e}")
# --- 2. All Helper Functions ---
def detect_faces_roboflow(image_path):
"""Calls Roboflow to find faces in the image."""
resp = CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2")
return resp.get("predictions", [])
def detect_eyes_roboflow(image_path):
"""Calls Roboflow to find eyes and returns cropped images of them."""
resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
raw_image = cv2.imread(image_path)
if raw_image is None: return [], "Could not read image"
eye_crops = []
for p in resp.get("predictions", []):
x1 = int(p['x'] - p['width'] / 2)
y1 = int(p['y'] - p['height'] / 2)
x2 = int(p['x'] + p['width'] / 2)
y2 = int(p['y'] + p['height'] / 2)
eye_crops.append(raw_image[y1:y2, x1:x2])
return eye_crops, None
def detect_iris_roboflow(eye_crop):
"""Calls Roboflow to find the largest iris in an eye crop."""
is_success, buffer = cv2.imencode(".jpg", eye_crop)
if not is_success: return None
resp = CLIENT_IRIS.infer(data=buffer, model_id="iris_120_set/7")
preds = resp.get("predictions", [])
if not preds: return None
largest = max(preds, key=lambda p: p["width"] * p["height"])
x1, y1 = int(largest['x'] - largest['width'] / 2), int(largest['y'] - largest['height'] / 2)
x2, y2 = int(largest['x'] + largest['width'] / 2), int(largest['y'] + largest['height'] / 2)
return eye_crop[y1:y2, x1:x2]
def run_leukocoria_prediction(iris_crop):
"""Runs the loaded TensorFlow model to predict leukocoria."""
if model is None: return {"error": "Leukocoria model not loaded"}
img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
img = img_pil.resize((224, 224))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)
return {f"Class_{i}": float(score) for i, score in enumerate(prediction[0])}
# --- 3. Create the FastAPI App and Main Endpoint ---
app = FastAPI()
@app.post("/api/detect/")
async def full_detection_pipeline(image: UploadFile = File(...)):
"""The main API endpoint that runs the full detection pipeline."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
tmp.write(await image.read())
temp_image_path = tmp.name
try:
if not detect_faces_roboflow(temp_image_path):
return JSONResponse(status_code=400, content={"error": "No face detected."})
eye_crops, error_msg = detect_eyes_roboflow(temp_image_path)
if error_msg or len(eye_crops) != 2:
return JSONResponse(status_code=400, content={"error": "Exactly two eyes not detected."})
results = {}
for i, eye_crop in enumerate(eye_crops):
side = f"eye_{i+1}"
iris_crop = detect_iris_roboflow(eye_crop)
if iris_crop is None:
results[side] = {"status": "No iris detected", "prediction": None}
continue
prediction = run_leukocoria_prediction(iris_crop)
results[side] = {"status": "Processed", "prediction": prediction}
return JSONResponse(content=results)
finally:
os.remove(temp_image_path)
# --- 4. Create the Gradio UI for the homepage ---
# This UI will call our own FastAPI endpoint, ensuring consistent logic.
def gradio_wrapper(image):
"""A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
try:
# Save the numpy array from Gradio to a temporary file to send to our API
pil_image = Image.fromarray(image)
with tempfile.NamedTemporaryFile(mode="wb", suffix=".jpg", delete=False) as tmp:
pil_image.save(tmp, format="JPEG")
tmp_path = tmp.name
with open(tmp_path, "rb") as f:
files = {'image': ('image.jpg', f, 'image/jpeg')}
# The API is running on the same server, so we call it locally
response = requests.post("http://127.0.0.1:7860/api/detect/", files=files)
os.remove(tmp_path) # Clean up the temp file
if response.status_code == 200:
return response.json()
else:
return {"error": f"API Error {response.status_code}", "details": response.text}
except Exception as e:
return {"error": str(e)}
gradio_ui = gr.Interface(
fn=gradio_wrapper,
inputs=gr.Image(type="numpy", label="Upload an eye image to test"),
outputs=gr.JSON(label="Prediction Results"),
title="LeukoLook Eye Detector",
description="A demonstration of the LeukoLook detection model. This UI calls the same API endpoint that the main application uses."
)
# --- 5. Mount the Gradio UI onto the FastAPI app's root ---
app = gr.mount_gradio_app(app, gradio_ui, path="/")
# --- 6. Run the server ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)