Spaces:
Running
Running
# app.py | |
# Adapted to follow the logic from the provided Django api/views.py with added logging | |
import os | |
import cv2 | |
import tempfile | |
import numpy as np | |
import uvicorn | |
import base64 | |
import io | |
from PIL import Image | |
from inference_sdk import InferenceHTTPClient | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse | |
import tensorflow as tf | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
# --- 1. Configuration and Model Loading --- | |
# Constants from the new Django logic | |
MAX_INFER_DIM = 1024 | |
ENHANCED_SIZE = (224, 224) | |
# Roboflow and TF Model setup | |
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY") | |
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) | |
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) | |
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) | |
leuko_model = None | |
try: | |
model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras") | |
leuko_model = tf.keras.models.load_model(model_path) | |
print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---") | |
except Exception as e: | |
print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---") | |
raise RuntimeError(f"Could not load leukocoria model: {e}") | |
# --- 2. Helper Functions (Adapted from Django views.py) --- | |
def enhance_image_unsharp_mask(image, strength=0.5, radius=5): | |
"""Enhances image using unsharp masking.""" | |
blur = cv2.GaussianBlur(image, (radius, radius), 0) | |
return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0) | |
def detect_faces_roboflow(image_path): | |
"""Detects faces using Roboflow.""" | |
return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", []) | |
def detect_eyes_roboflow(image_path): | |
""" | |
Detects eyes, resizing the image if necessary for inference, | |
then scales coordinates back to the original image size. | |
""" | |
raw_image = cv2.imread(image_path) | |
if raw_image is None: | |
return None, [] | |
h, w = raw_image.shape[:2] | |
scale = min(1.0, MAX_INFER_DIM / max(h, w)) | |
if scale < 1.0: | |
small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale))) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: | |
cv2.imwrite(tmp.name, small_image) | |
infer_path = tmp.name | |
else: | |
infer_path = image_path | |
try: | |
resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3") | |
finally: | |
if scale < 1.0 and os.path.exists(infer_path): | |
os.remove(infer_path) | |
crops = [] | |
for p in resp.get("predictions", []): | |
cx, cy = p["x"] / scale, p["y"] / scale | |
bw, bh = p["width"] / scale, p["height"] / scale | |
x1 = int(cx - bw / 2) | |
y1 = int(cy - bh / 2) | |
x2 = int(cx + bw / 2) | |
y2 = int(cy + bh / 2) | |
crop = raw_image[y1:y2, x1:x2] | |
if crop.size > 0: | |
crops.append({"coords": (x1, y1, x2, y2), "image": crop}) | |
return raw_image, crops | |
def get_largest_iris_prediction(eye_crop): | |
"""Finds the largest iris in an eye crop.""" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: | |
cv2.imwrite(tmp.name, eye_crop) | |
temp_path = tmp.name | |
try: | |
resp = CLIENT_IRIS.infer(temp_path, model_id="iris_120_set/7") | |
preds = resp.get("predictions", []) | |
return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None | |
finally: | |
os.remove(temp_path) | |
def run_leukocoria_prediction(iris_crop): | |
"""Runs the loaded TensorFlow model on an iris crop.""" | |
enh = enhance_image_unsharp_mask(iris_crop) | |
enh_rs = cv2.resize(enh, ENHANCED_SIZE) | |
img_array = np.array(enh_rs) / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
prediction = leuko_model.predict(img_array) | |
confidence = float(prediction[0][0]) | |
has_leuko = confidence > 0.5 | |
return has_leuko, confidence | |
def to_base64(image): | |
"""Converts a CV2 image to a base64 string.""" | |
_, buffer = cv2.imencode(".jpg", image) | |
return "data:image/jpeg;base64," + base64.b64encode(buffer).decode() | |
# --- 3. FastAPI Application --- | |
app = FastAPI() | |
async def full_detection_pipeline(image: UploadFile = File(...)): | |
print("\n--- 1. Starting full detection pipeline. ---") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: | |
tmp.write(await image.read()) | |
temp_image_path = tmp.name | |
try: | |
print("--- 2. Checking for faces... ---") | |
if not detect_faces_roboflow(temp_image_path): | |
print("--- 2a. No face detected. Aborting. ---") | |
return JSONResponse(status_code=200, content={"warnings": ["No face detected."]}) | |
print("--- 2b. Face found. Proceeding. ---") | |
print("--- 3. Detecting eyes... ---") | |
raw_image, eye_crops = detect_eyes_roboflow(temp_image_path) | |
if raw_image is None: | |
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."}) | |
print(f"--- 4. Found {len(eye_crops)} eyes. ---") | |
if len(eye_crops) != 2: | |
return JSONResponse(status_code=200, content={ | |
"analyzed_image": to_base64(raw_image), | |
"warnings": ["Exactly two eyes not detected."] | |
}) | |
initial_coords = [e['coords'] for e in eye_crops] | |
print(f"--- 5. Initial eye coordinates: {initial_coords} ---") | |
sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0]) | |
sorted_coords = [e['coords'] for e in sorted_eyes] | |
print(f"--- 6. Sorted eye coordinates: {sorted_coords} ---") | |
images_b64 = {} | |
flags = {} | |
for i, eye_info in enumerate(sorted_eyes): | |
side = "right" if i == 0 else "left" | |
print(f"--- 7. Processing side: '{side}' ---") | |
eye_img = eye_info["image"] | |
pred = get_largest_iris_prediction(eye_img) | |
if pred: | |
print(f"--- 8. Iris found for '{side}' eye. Running leukocoria prediction... ---") | |
cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"] | |
x1, y1 = int(cx - w / 2), int(cy - h / 2) | |
x2, y2 = int(cx + w / 2), int(cy + h / 2) | |
iris_crop = eye_img[y1:y2, x1:x2] | |
has_leuko, confidence = run_leukocoria_prediction(iris_crop) | |
print(f"--- 9. Prediction for '{side}' eye: Has Leukocoria={has_leuko}, Confidence={confidence:.4f} ---") | |
flags[side] = has_leuko | |
else: | |
print(f"--- 8a. No iris found for '{side}' eye. ---") | |
flags[side] = None | |
images_b64[side] = to_base64(eye_img) | |
print(f"--- 10. Final generated flags: {flags} ---") | |
return JSONResponse(status_code=200, content={ | |
"analyzed_image": to_base64(raw_image), | |
"two_eyes": images_b64, | |
"leukocoria": flags, | |
"warnings": [] | |
}) | |
finally: | |
os.remove(temp_image_path) | |
# --- 4. Gradio UI (for simple testing) --- | |
def gradio_wrapper(image_array): | |
try: | |
pil_image = Image.fromarray(image_array) | |
with io.BytesIO() as buffer: | |
pil_image.save(buffer, format="JPEG") | |
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')} | |
response = requests.post("http://127.0.0.1:7860/detect/", files=files) | |
return response.json() | |
except Exception as e: | |
return {"error": str(e)} | |
gradio_ui = gr.Interface( | |
fn=gradio_wrapper, | |
inputs=gr.Image(type="numpy", label="Upload an eye image"), | |
outputs=gr.JSON(label="Analysis Results"), | |
title="LeukoLook Eye Detector", | |
description="Demonstration of the full detection pipeline." | |
) | |
app = gr.mount_gradio_app(app, gradio_ui, path="/") | |
# --- 5. Run Server --- | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |